首页 > 最新文献

Proceedings of the Third International Workshop on Spatial Language Understanding最新文献

英文 中文
They are not all alike: answering different spatial questions requires different grounding strategies 它们并不都是一样的:回答不同的空间问题需要不同的接地策略
Pub Date : 2020-11-01 DOI: 10.18653/v1/2020.splu-1.4
Alberto Testoni, Claudio Greco, Tobias Bianchi, Mauricio Mazuecos, Agata Marcante, Luciana Benotti, R. Bernardi
In this paper, we study the grounding skills required to answer spatial questions asked by humans while playing the GuessWhat?! game. We propose a classification for spatial questions dividing them into absolute, relational, and group questions. We build a new answerer model based on the LXMERT multimodal transformer and we compare a baseline with and without visual features of the scene. We are interested in studying how the attention mechanisms of LXMERT are used to answer spatial questions since they require putting attention on more than one region simultaneously and spotting the relation holding among them. We show that our proposed model outperforms the baseline by a large extent (9.70% on spatial questions and 6.27% overall). By analyzing LXMERT errors and its attention mechanisms, we find that our classification helps to gain a better understanding of the skills required to answer different spatial questions.
在本文中,我们研究了在玩《GuessWhat?!》时回答人类提出的空间问题所需的基础技能。游戏。我们提出了空间问题的分类,将它们分为绝对问题、关系问题和群体问题。我们基于LXMERT多模态变压器建立了一个新的应答器模型,并比较了有和没有场景视觉特征的基线。我们感兴趣的是研究LXMERT的注意机制是如何被用来回答空间问题的,因为它们需要同时把注意力放在多个区域上,并发现它们之间的关系。我们表明,我们提出的模型在很大程度上优于基线(在空间问题上为9.70%,在总体上为6.27%)。通过分析LXMERT错误及其注意机制,我们发现我们的分类有助于更好地理解回答不同空间问题所需的技能。
{"title":"They are not all alike: answering different spatial questions requires different grounding strategies","authors":"Alberto Testoni, Claudio Greco, Tobias Bianchi, Mauricio Mazuecos, Agata Marcante, Luciana Benotti, R. Bernardi","doi":"10.18653/v1/2020.splu-1.4","DOIUrl":"https://doi.org/10.18653/v1/2020.splu-1.4","url":null,"abstract":"In this paper, we study the grounding skills required to answer spatial questions asked by humans while playing the GuessWhat?! game. We propose a classification for spatial questions dividing them into absolute, relational, and group questions. We build a new answerer model based on the LXMERT multimodal transformer and we compare a baseline with and without visual features of the scene. We are interested in studying how the attention mechanisms of LXMERT are used to answer spatial questions since they require putting attention on more than one region simultaneously and spotting the relation holding among them. We show that our proposed model outperforms the baseline by a large extent (9.70% on spatial questions and 6.27% overall). By analyzing LXMERT errors and its attention mechanisms, we find that our classification helps to gain a better understanding of the skills required to answer different spatial questions.","PeriodicalId":272497,"journal":{"name":"Proceedings of the Third International Workshop on Spatial Language Understanding","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114298589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A Cognitively Motivated Approach to Spatial Information Extraction 空间信息提取的认知动机方法
Pub Date : 2020-11-01 DOI: 10.18653/v1/2020.splu-1.3
Chao Xu, Emmanuelle-Anna Dietz Saldanha, Dagmar Gromann, Beihai Zhou
Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.
从自然语言中自动提取空间信息可以促进依赖于空间动态的以人为中心的应用。认知语言学领域为解决这一问题提供了理论和认知模型。然而,现有的解决方案往往侧重于特定的词类、主题领域或机器学习技术,这些技术无法为其决策提供认知上合理的解释。本文提出了一个基于语法和认知语言学理论的自动空间语义分析(ASSA)框架,将空间信息提取方法和空间语言认知框架相结合,用于识别空间实体和空间关系。提出的基于规则和可解释的方法提供了结构和介词模式,并且在CLEF-2017标准数据集上优于先前的解决方案。
{"title":"A Cognitively Motivated Approach to Spatial Information Extraction","authors":"Chao Xu, Emmanuelle-Anna Dietz Saldanha, Dagmar Gromann, Beihai Zhou","doi":"10.18653/v1/2020.splu-1.3","DOIUrl":"https://doi.org/10.18653/v1/2020.splu-1.3","url":null,"abstract":"Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.","PeriodicalId":272497,"journal":{"name":"Proceedings of the Third International Workshop on Spatial Language Understanding","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131376436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the Third International Workshop on Spatial Language Understanding
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1