Denoising Autoencoder for the Removal of Noise in Brain MR Images

Akshaya Thomas, Devi Krishna K R, Dhanya Babu, Ameenudeen P.E
{"title":"Denoising Autoencoder for the Removal of Noise in Brain MR Images","authors":"Akshaya Thomas, Devi Krishna K R, Dhanya Babu, Ameenudeen P.E","doi":"10.1109/ICCC57789.2023.10165274","DOIUrl":null,"url":null,"abstract":"Medical imaging methods like X-rays, ultrasound, Computed Tomography (CT) scans and Magnetic Resonance Imaging (MRI) can show structures of the internal body in great detail. However, there is unavoidable and ubiquitous noise in images created by medical imaging equipment. The use of noise reduction methods in medical imaging has therefore become crucial. In this article, we are focusing primarily on eliminating noise from MRI images of the brain. In terms of revealing details about the location and size of tumors, MRI is quite effective. Here we are proposing a Convolutional Denoising Autoencoder for removing noise from these images. Convolutional autoencoders can gently extract the data while preserving the spatial information of the image data. As a result, we can denoise with greater accuracy while using less computation and data. Our model got an SSIM value of 0.85 and a PSNR value of 30 dB.","PeriodicalId":192909,"journal":{"name":"2023 International Conference on Control, Communication and Computing (ICCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Control, Communication and Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC57789.2023.10165274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical imaging methods like X-rays, ultrasound, Computed Tomography (CT) scans and Magnetic Resonance Imaging (MRI) can show structures of the internal body in great detail. However, there is unavoidable and ubiquitous noise in images created by medical imaging equipment. The use of noise reduction methods in medical imaging has therefore become crucial. In this article, we are focusing primarily on eliminating noise from MRI images of the brain. In terms of revealing details about the location and size of tumors, MRI is quite effective. Here we are proposing a Convolutional Denoising Autoencoder for removing noise from these images. Convolutional autoencoders can gently extract the data while preserving the spatial information of the image data. As a result, we can denoise with greater accuracy while using less computation and data. Our model got an SSIM value of 0.85 and a PSNR value of 30 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑磁共振图像去噪自编码器
医学成像方法,如x射线、超声波、计算机断层扫描(CT)和磁共振成像(MRI)可以非常详细地显示身体内部的结构。然而,在医学成像设备产生的图像中,不可避免地存在着无处不在的噪声。因此,在医学成像中使用降噪方法变得至关重要。在这篇文章中,我们主要集中在消除大脑MRI图像中的噪声。在揭示肿瘤的位置和大小的细节方面,MRI是相当有效的。在这里,我们提出了一个卷积去噪自编码器,用于从这些图像中去除噪声。卷积自编码器可以在保留图像数据空间信息的同时,轻松地提取数据。因此,我们可以使用更少的计算和数据,以更高的精度去噪。该模型的SSIM值为0.85,PSNR值为30 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach for Mixed type Wafer Defect Pattern Recognition by ResNet Architecture A Review on Electromagnetic Metamaterial Absorbers A Review on Underwater Image Enhancement Techniques Review on Video Super Resolution: Methods and Metrics Denoising Autoencoder for the Removal of Noise in Brain MR Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1