V. S. Bhaskar, Jong Ming Chinq, Kazunori Yamamoto, G. Tang
{"title":"Electrical Design and Modeling of Silicon Carbide Power Modules for Inverter Applications","authors":"V. S. Bhaskar, Jong Ming Chinq, Kazunori Yamamoto, G. Tang","doi":"10.1109/ectc51906.2022.00320","DOIUrl":null,"url":null,"abstract":"In this paper, electrical design and modeling of silicon carbide power modules for inverter applications are discussed. A 6-in-l silicon carbide MOSFET power module is proposed, and its package is described and analyzed. The electrical design and modeling are done using Ansys Q3D simulation to extract the parasitic inductances and capacitances. The computed power loop inductance is 6.21 nH, gate loop inductance is 1.94 nH, while the parasitic capacitance is 29.98 pF.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":"92 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, electrical design and modeling of silicon carbide power modules for inverter applications are discussed. A 6-in-l silicon carbide MOSFET power module is proposed, and its package is described and analyzed. The electrical design and modeling are done using Ansys Q3D simulation to extract the parasitic inductances and capacitances. The computed power loop inductance is 6.21 nH, gate loop inductance is 1.94 nH, while the parasitic capacitance is 29.98 pF.