Shin-Shiun Chen, Chun-Kai Hsu, Hsiu-Chuan Shih, J. Yeh, Cheng-Wen Wu
{"title":"Processor and DRAM integration by TSV-based 3-D stacking for power-aware SOCs","authors":"Shin-Shiun Chen, Chun-Kai Hsu, Hsiu-Chuan Shih, J. Yeh, Cheng-Wen Wu","doi":"10.1109/ASPDAC.2013.6509634","DOIUrl":null,"url":null,"abstract":"With the rapid popularization of mobile devices, the low-power and energy-efficient became far more important than the system operating frequency. This work demonstrates a processor and DRAM integration scheme by TSV-based 3-D stacking and the performance and energy efficiency is evaluated by an ESL design methodology. The integration scheme comprising Sans-Cache DRAM (SCDRAM) architecture which is designed under the power and energy considerations is explored. Experiment results show the proposed architecture can greatly reduce 80% energy while having 23.5% of system performance improvement.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With the rapid popularization of mobile devices, the low-power and energy-efficient became far more important than the system operating frequency. This work demonstrates a processor and DRAM integration scheme by TSV-based 3-D stacking and the performance and energy efficiency is evaluated by an ESL design methodology. The integration scheme comprising Sans-Cache DRAM (SCDRAM) architecture which is designed under the power and energy considerations is explored. Experiment results show the proposed architecture can greatly reduce 80% energy while having 23.5% of system performance improvement.