Tuning of the PID Controller to the System with Maximum Stability Degree using Genetic Algorithm

I. Cojuhari, I. Fiodorov, B. Izvoreanu, Dumitru Moraru
{"title":"Tuning of the PID Controller to the System with Maximum Stability Degree using Genetic Algorithm","authors":"I. Cojuhari, I. Fiodorov, B. Izvoreanu, Dumitru Moraru","doi":"10.1109/DAS49615.2020.9108969","DOIUrl":null,"url":null,"abstract":"In this paper is proposed a tuning algorithm of PID controller that offers the maximum stability degree of the control system, based on the genetic algorithm. The tuning algorithm was designed based on the maximum stability degree method with iterations, where the tuning parameters depend on maximum stability degree which is varied. Based on its values, it was proposed to implement genetic algorithm to find the tuning parameters. The maximum stability degree method permits to obtain the high stability and high performance of the system, but this method has some limitations in case when control object is described by the model of object with inertia low order. In this case to find the best tuning parameters was proposed to use the genetic algorithm. For efficacy analysis of the proposed algorithm, there are presented some case studies and practical applications.","PeriodicalId":103267,"journal":{"name":"2020 International Conference on Development and Application Systems (DAS)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Development and Application Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS49615.2020.9108969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper is proposed a tuning algorithm of PID controller that offers the maximum stability degree of the control system, based on the genetic algorithm. The tuning algorithm was designed based on the maximum stability degree method with iterations, where the tuning parameters depend on maximum stability degree which is varied. Based on its values, it was proposed to implement genetic algorithm to find the tuning parameters. The maximum stability degree method permits to obtain the high stability and high performance of the system, but this method has some limitations in case when control object is described by the model of object with inertia low order. In this case to find the best tuning parameters was proposed to use the genetic algorithm. For efficacy analysis of the proposed algorithm, there are presented some case studies and practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用遗传算法对PID控制器进行最大稳定度整定
本文提出了一种基于遗传算法的PID控制器的整定算法,使控制系统的稳定性达到最大。基于迭代的最大稳定度法设计了调谐算法,其中调谐参数取决于最大稳定度的变化。在此基础上,提出了采用遗传算法求整定参数的方法。最大稳定度法可以获得系统的高稳定性和高性能,但当控制对象由低阶惯性对象模型描述时,该方法存在一定的局限性。针对这种情况,提出了利用遗传算法寻找最佳调优参数的方法。为了分析该算法的有效性,给出了一些案例研究和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning of the PID Controller to the System with Maximum Stability Degree using Genetic Algorithm Omnidirectional Antenna with Complex Conjugate Impedance for Radio Meteor Detection DAS 2020 Index Authors DAS 2020 Cover Page Experimental Results on the Accuracy of the Myo Armband for Short-Range Pointing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1