Copper as the future interconnection material

P. Pai, C. Ting
{"title":"Copper as the future interconnection material","authors":"P. Pai, C. Ting","doi":"10.1109/VMIC.1989.78029","DOIUrl":null,"url":null,"abstract":"Cu film was evaluated as a candidate for future interconnection. As the device dimensions are scaled below 0.5 mu m, the RC time constant of interconnection becomes a major part of the total delay. By reducing the resistivity of interconnect, the operating speed can be increased by more than 20% without any change in design rule. An electroless deposition process is proposed to solve the Cu patterning difficulty. Patterns of 2.0- mu m pitch were achieved with this process. Copper contamination was addressed, and dielectric films such as silicon oxynitride and silicon nitride were shown to be effective in stopping Cu diffusion. The authors also investigated Cu corrosion. By coating a thin Ni film on Cu they reduced the corrosion from 0.2 mu m/h to less than 0.05 mu m/h at 100 degrees C in 1-mol/1 KCl solution.<<ETX>>","PeriodicalId":302853,"journal":{"name":"Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VMIC.1989.78029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Cu film was evaluated as a candidate for future interconnection. As the device dimensions are scaled below 0.5 mu m, the RC time constant of interconnection becomes a major part of the total delay. By reducing the resistivity of interconnect, the operating speed can be increased by more than 20% without any change in design rule. An electroless deposition process is proposed to solve the Cu patterning difficulty. Patterns of 2.0- mu m pitch were achieved with this process. Copper contamination was addressed, and dielectric films such as silicon oxynitride and silicon nitride were shown to be effective in stopping Cu diffusion. The authors also investigated Cu corrosion. By coating a thin Ni film on Cu they reduced the corrosion from 0.2 mu m/h to less than 0.05 mu m/h at 100 degrees C in 1-mol/1 KCl solution.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜作为未来的互连材料
Cu薄膜被评价为未来互连的候选材料。当器件尺寸缩小到0.5 μ m以下时,互连RC时间常数成为总延迟的主要部分。通过降低互连电阻率,在不改变设计规则的情况下,运行速度可提高20%以上。提出了一种化学沉积方法来解决Cu图像化难题。用此工艺得到了2.0 μ m的节距图案。铜污染得到了解决,氮化硅和氮化硅等介电膜可以有效地阻止铜的扩散。作者还研究了铜的腐蚀。在1 mol/1 KCl溶液中,在100℃下,他们在Cu表面涂上一层薄薄的Ni膜,将腐蚀从0.2 μ m/h降低到0.05 μ m/h以下
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dielectric film deposition by atmospheric pressure and low temperature CVD using TEOS, ozone, and new organometallic doping sources Characteristics of a poly-silicon contact plug technology Copper as the future interconnection material Advanced interconnection technologies and system-level communications functions Corrosion characteristics of metallization systems with XRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1