GGP approach to solve non convex min-max robust model predictive controller for a class of constrained MIMO systems

Amira Kheriji, F. Bouani, M. Ksouri
{"title":"GGP approach to solve non convex min-max robust model predictive controller for a class of constrained MIMO systems","authors":"Amira Kheriji, F. Bouani, M. Ksouri","doi":"10.1109/SM2ACD.2010.5672350","DOIUrl":null,"url":null,"abstract":"This paper proposes a new mathematical method to solve min-max predictive controller for a class of constrained linear Multi Input Multi Output (MIMO) systems. A parametric uncertainty state space model is adopted to describe the dynamic behavior of the real process. Since the resulting optimization problem is non convex, a deterministic global optimization technique is adopted to solve it which is the Generalized Geometric Programming (GGP). The key idea of this method is to transform the initial non convex optimization problem to a convex one by means of variable transformations. The main achievement is that the optimal control value found with the GGP shows successful set point tracking and constraints satisfaction. Moreover, an efficient implementation of this approach will lead to an algorithm with a low computational burden. The main features of the new algorithm are illustrated through a MIMO system.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new mathematical method to solve min-max predictive controller for a class of constrained linear Multi Input Multi Output (MIMO) systems. A parametric uncertainty state space model is adopted to describe the dynamic behavior of the real process. Since the resulting optimization problem is non convex, a deterministic global optimization technique is adopted to solve it which is the Generalized Geometric Programming (GGP). The key idea of this method is to transform the initial non convex optimization problem to a convex one by means of variable transformations. The main achievement is that the optimal control value found with the GGP shows successful set point tracking and constraints satisfaction. Moreover, an efficient implementation of this approach will lead to an algorithm with a low computational burden. The main features of the new algorithm are illustrated through a MIMO system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类约束MIMO系统非凸最小最大鲁棒模型预测控制器的GGP方法
提出了求解一类约束线性多输入多输出(MIMO)系统的最小-最大预测控制器的一种新的数学方法。采用参数不确定状态空间模型来描述实际过程的动态行为。由于所得到的优化问题是非凸的,因此采用了一种确定性全局优化技术,即广义几何规划(GGP)。该方法的核心思想是通过变量变换将初始非凸优化问题转化为凸优化问题。主要的成果是用GGP找到的最优控制值显示出成功的设定点跟踪和约束满足。此外,该方法的有效实现将导致算法具有较低的计算负担。通过一个MIMO系统说明了新算法的主要特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation of RF integrated inductors analytical characterization A compact analytical current model including traps effects for GS DG MOSFETs Companion models in two-time scale for multitone steady-state simulation of the nonlinear circuits GGP approach to solve non convex min-max robust model predictive controller for a class of constrained MIMO systems Enumerating all the spanning trees in an un-oriented graph - A novel approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1