{"title":"Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction","authors":"Hangjun Che, Jun Wang, A. Cichocki","doi":"10.1109/ICIST55546.2022.9926780","DOIUrl":null,"url":null,"abstract":"In this paper, sparse signal reconstruction is for-mulated a q-ratio minimization problem subjecting to linear underdetermined equations. In view of the nonconvexity of the objective function, the q-ratio formulation with $q=2$ is approximately reformulated as an iteratively reweighted convex optimization problem in the majorization-minimization frame-work. A neurodynamic optimization approach is introduced to solve the formulated problem iteratively. The experimental results on sparse signal reconstruction are discussed to demonstrate the performance of the proposed approach.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, sparse signal reconstruction is for-mulated a q-ratio minimization problem subjecting to linear underdetermined equations. In view of the nonconvexity of the objective function, the q-ratio formulation with $q=2$ is approximately reformulated as an iteratively reweighted convex optimization problem in the majorization-minimization frame-work. A neurodynamic optimization approach is introduced to solve the formulated problem iteratively. The experimental results on sparse signal reconstruction are discussed to demonstrate the performance of the proposed approach.