A Simple Prediction Fusion Improves Data-driven Full-Reference Video Quality Assessment Models

C. Bampis, A. Bovik, Zhi Li
{"title":"A Simple Prediction Fusion Improves Data-driven Full-Reference Video Quality Assessment Models","authors":"C. Bampis, A. Bovik, Zhi Li","doi":"10.1109/PCS.2018.8456293","DOIUrl":null,"url":null,"abstract":"When developing data-driven video quality assessment algorithms, the size of the available ground truth subjective data may hamper the generalization capabilities of the trained models. Nevertheless, if the application context is known a priori, leveraging data-driven approaches for video quality prediction can deliver promising results. Towards achieving highperforming video quality prediction for compression and scaling artifacts, Netflix developed the Video Multi-method Assessment Fusion (VMAF) Framework, a full-reference prediction system which uses a regression scheme to integrate multiple perceptionmotivated features to predict video quality. However, the current version of VMAF does not fully capture temporal video features relevant to temporal video distortions. To achieve this goal, we developed Ensemble VMAF (E-VMAF): a video quality predictor that combines two models: VMAF and predictions based on entropic differencing features calculated on video frames and frame differences. We demonstrate the improved performance of E-VMAF on various subjective video databases. The proposed model will become available as part of the open source package in https://github. com/Netflix/vmaf.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

When developing data-driven video quality assessment algorithms, the size of the available ground truth subjective data may hamper the generalization capabilities of the trained models. Nevertheless, if the application context is known a priori, leveraging data-driven approaches for video quality prediction can deliver promising results. Towards achieving highperforming video quality prediction for compression and scaling artifacts, Netflix developed the Video Multi-method Assessment Fusion (VMAF) Framework, a full-reference prediction system which uses a regression scheme to integrate multiple perceptionmotivated features to predict video quality. However, the current version of VMAF does not fully capture temporal video features relevant to temporal video distortions. To achieve this goal, we developed Ensemble VMAF (E-VMAF): a video quality predictor that combines two models: VMAF and predictions based on entropic differencing features calculated on video frames and frame differences. We demonstrate the improved performance of E-VMAF on various subjective video databases. The proposed model will become available as part of the open source package in https://github. com/Netflix/vmaf.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个简单的预测融合改进了数据驱动的全参考视频质量评估模型
在开发数据驱动的视频质量评估算法时,可用的真实主观数据的大小可能会阻碍训练模型的泛化能力。然而,如果应用程序上下文是先验的,利用数据驱动的方法进行视频质量预测可以提供有希望的结果。为了实现对压缩和缩放工件的高性能视频质量预测,Netflix开发了视频多方法评估融合(VMAF)框架,这是一个全参考预测系统,它使用回归方案集成多个感知驱动特征来预测视频质量。然而,当前版本的VMAF并不能完全捕获与时间视频失真相关的时间视频特征。为了实现这一目标,我们开发了集成VMAF (E-VMAF):一个视频质量预测器,它结合了两个模型:VMAF和基于视频帧和帧差计算的熵差特征的预测。我们在各种主观视频数据库上演示了E-VMAF的改进性能。建议的模型将作为https://github中开放源代码包的一部分提供。com/Netflix/vmaf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1