Inference and Prediction in Big Data Using Sparse Gaussian Process Method

Leta Yobsan Bayisa, Weidong Wang, Qing-xian Wang, Meseret Debele Gurmu, Lamessa Bona Debela
{"title":"Inference and Prediction in Big Data Using Sparse Gaussian Process Method","authors":"Leta Yobsan Bayisa, Weidong Wang, Qing-xian Wang, Meseret Debele Gurmu, Lamessa Bona Debela","doi":"10.1145/3529570.3529580","DOIUrl":null,"url":null,"abstract":"Gaussian process is one of computationally expensive algorithm for large datasets and lack of the flexibility to model different datasets is a common problem for modeling it. We introduce sparse Gaussian regression with the combination of designed kernels to solve the computational complexity of a traditional Gaussian process by taking pseudo input from large datasets and developing a model with better accuracy which enables Gaussian process application. We design a better combination of the kernel that can catch up with most of our data points. We demonstrate the approach on a large weather dataset and sales record dataset. Both are open source big datasets available online. Numerous experiments and comparisons with traditional Gaussian process methods using both large datasets demonstrate the efficiency and accuracy of sparse Gaussian processes.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian process is one of computationally expensive algorithm for large datasets and lack of the flexibility to model different datasets is a common problem for modeling it. We introduce sparse Gaussian regression with the combination of designed kernels to solve the computational complexity of a traditional Gaussian process by taking pseudo input from large datasets and developing a model with better accuracy which enables Gaussian process application. We design a better combination of the kernel that can catch up with most of our data points. We demonstrate the approach on a large weather dataset and sales record dataset. Both are open source big datasets available online. Numerous experiments and comparisons with traditional Gaussian process methods using both large datasets demonstrate the efficiency and accuracy of sparse Gaussian processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏高斯过程的大数据推理与预测
高斯过程是大数据集计算量大的算法之一,缺乏对不同数据集建模的灵活性是高斯过程建模的一个常见问题。为了解决传统高斯过程的计算复杂性,我们引入了稀疏高斯回归与设计核的组合,通过从大数据集中获取伪输入,并开发出具有更高精度的模型,使高斯过程能够应用。我们设计了一个更好的内核组合,可以赶上我们的大多数数据点。我们在大型天气数据集和销售记录数据集上演示了该方法。两者都是开源的在线大数据集。在两个大数据集上进行的大量实验和与传统高斯过程方法的比较证明了稀疏高斯过程的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference and Prediction in Big Data Using Sparse Gaussian Process Method A SAR Image Denoising Method for Target Shadow Tracking Task Development of an English Teaching Robot for Japanese Students Joint Power and Bandwidth Allocation for 3D Video SoftCast Some Evaluations on Spectrogram Art Communications Exchanging Secret Visual Messages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1