A SAR Image Denoising Method for Target Shadow Tracking Task

Yankun Huang, Guangcai Sun, M. Xing
{"title":"A SAR Image Denoising Method for Target Shadow Tracking Task","authors":"Yankun Huang, Guangcai Sun, M. Xing","doi":"10.1145/3529570.3529598","DOIUrl":null,"url":null,"abstract":"The interpretation of Synthetic Aperture Radar (SAR) image is considered to be a challenging task, especially when tracking the target shadow in Video SAR (ViSAR), the speckle noise needs to be considered. Based on this, this paper proposes a SAR image denoising algorithm based on the improved wavelet threshold function. Different from the existing denoising methods, this algorithm combines the characteristics of hard threshold function and soft threshold function in traditional wavelet transform denoising, constructs a new threshold function, and improves the equivalent number of looks (ENL) of denoised SAR image. When the denoised image is applied to the tracking task, the target features are enhanced by k-means algorithm and binarization method, so as to improve the tracking accuracy. Experimental results show that the algorithm improves the tracking accuracy on the basis of ensuring the real-time performance of tracking and makes the tracking task highly robust to the noise of SAR image.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The interpretation of Synthetic Aperture Radar (SAR) image is considered to be a challenging task, especially when tracking the target shadow in Video SAR (ViSAR), the speckle noise needs to be considered. Based on this, this paper proposes a SAR image denoising algorithm based on the improved wavelet threshold function. Different from the existing denoising methods, this algorithm combines the characteristics of hard threshold function and soft threshold function in traditional wavelet transform denoising, constructs a new threshold function, and improves the equivalent number of looks (ENL) of denoised SAR image. When the denoised image is applied to the tracking task, the target features are enhanced by k-means algorithm and binarization method, so as to improve the tracking accuracy. Experimental results show that the algorithm improves the tracking accuracy on the basis of ensuring the real-time performance of tracking and makes the tracking task highly robust to the noise of SAR image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于目标阴影跟踪的SAR图像去噪方法
合成孔径雷达(SAR)图像的解译是一项具有挑战性的任务,特别是在视频SAR (ViSAR)中,在跟踪目标阴影时,需要考虑散斑噪声。在此基础上,提出了一种基于改进小波阈值函数的SAR图像去噪算法。与现有的去噪方法不同,该算法结合了传统小波变换去噪中硬阈值函数和软阈值函数的特点,构建了新的阈值函数,提高了去噪后SAR图像的等效外观数(ENL)。将去噪后的图像应用于跟踪任务时,通过k-means算法和二值化方法对目标特征进行增强,从而提高跟踪精度。实验结果表明,该算法在保证跟踪实时性的基础上提高了跟踪精度,并使跟踪任务对SAR图像噪声具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference and Prediction in Big Data Using Sparse Gaussian Process Method A SAR Image Denoising Method for Target Shadow Tracking Task Development of an English Teaching Robot for Japanese Students Joint Power and Bandwidth Allocation for 3D Video SoftCast Some Evaluations on Spectrogram Art Communications Exchanging Secret Visual Messages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1