{"title":"0.15uM Y-Gate pHEMT Process Using Deep-UV Phase-Shift Lithography","authors":"Jerry Wang, J. Stanback, K. Fujii","doi":"10.1109/CSICS.2011.6062444","DOIUrl":null,"url":null,"abstract":"An AlGaAs/InGaAs pHEMT process employing Deep-UV Phase-Shift lithography to create 0.15uM Y-shape gates has been developed and released to manufacturing. The gate formation process has high throughput and low cost compared to E-beam lithography and excellent process control has been achieved. Typical Fet characteristics are: peak fT=86Ghz, Vp=-1.0V, Gmmax=520mS/mm, Imax=575mA/mm, and BVdg=14 volts. A 9-section traveling wave amplifier (TWA) with 10dB gain up to 88 Ghz has been manufactured in this process.","PeriodicalId":275064,"journal":{"name":"2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2011.6062444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An AlGaAs/InGaAs pHEMT process employing Deep-UV Phase-Shift lithography to create 0.15uM Y-shape gates has been developed and released to manufacturing. The gate formation process has high throughput and low cost compared to E-beam lithography and excellent process control has been achieved. Typical Fet characteristics are: peak fT=86Ghz, Vp=-1.0V, Gmmax=520mS/mm, Imax=575mA/mm, and BVdg=14 volts. A 9-section traveling wave amplifier (TWA) with 10dB gain up to 88 Ghz has been manufactured in this process.