Predicting Blood Glucose using an LSTM Neural Network

T. E. Idrissi, A. Idri, Ibtissam Abnane, Z. Bakkoury
{"title":"Predicting Blood Glucose using an LSTM Neural Network","authors":"T. E. Idrissi, A. Idri, Ibtissam Abnane, Z. Bakkoury","doi":"10.15439/2019F159","DOIUrl":null,"url":null,"abstract":"Diabetes self-management relies on the blood glucose prediction as it allows taking suitable actions to prevent low or high blood glucose level. In this paper, we propose a deep learning neural network (NN) model for blood glucose prediction. It is a sequential one using a Long-Short-Term Memory (LSTM) layer with two fully connected layers. Several experiments were carried out over data of 10 diabetic patients to decide on the model’s parameters in order to identify the best variant of it. The performance of the proposed LSTM NN measured in terms of root mean square error (RMSE) was compared with the ones of an existing LSTM and an autoregressive (AR) models. The results show that our LSTM NN is significantly more accurate; in fact, it outperforms the existing LSTM model for all patients and outperforms the AR model in 9 over 10 patients, besides, the performance differences were assessed by the Wilcoxon statistical test. Furthermore, the mean of the RMSE of our model was 12.38 mg/dl while it was 28.84 mg/dl and 50.69 mg/dl for AR and the existing LSTM respectively.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Diabetes self-management relies on the blood glucose prediction as it allows taking suitable actions to prevent low or high blood glucose level. In this paper, we propose a deep learning neural network (NN) model for blood glucose prediction. It is a sequential one using a Long-Short-Term Memory (LSTM) layer with two fully connected layers. Several experiments were carried out over data of 10 diabetic patients to decide on the model’s parameters in order to identify the best variant of it. The performance of the proposed LSTM NN measured in terms of root mean square error (RMSE) was compared with the ones of an existing LSTM and an autoregressive (AR) models. The results show that our LSTM NN is significantly more accurate; in fact, it outperforms the existing LSTM model for all patients and outperforms the AR model in 9 over 10 patients, besides, the performance differences were assessed by the Wilcoxon statistical test. Furthermore, the mean of the RMSE of our model was 12.38 mg/dl while it was 28.84 mg/dl and 50.69 mg/dl for AR and the existing LSTM respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用LSTM神经网络预测血糖
糖尿病自我管理依赖于血糖预测,因为它允许采取适当的行动来预防低血糖或高血糖。在本文中,我们提出了一种深度学习神经网络(NN)模型用于血糖预测。它是使用长短期记忆(LSTM)层和两个完全连接的层的顺序存储器。对10例糖尿病患者的数据进行了多次实验,以确定模型的参数,以确定模型的最佳变体。用均方根误差(RMSE)来衡量所提出的LSTM神经网络的性能,并与现有的LSTM和自回归(AR)模型进行了比较。结果表明,LSTM神经网络的准确率显著提高;事实上,该模型在所有患者中均优于现有的LSTM模型,在9 / 10例患者中优于AR模型,并采用Wilcoxon统计检验评估其性能差异。此外,我们的模型的均方根误差为12.38 mg/dl,而AR和现有LSTM的均方根误差分别为28.84 mg/dl和50.69 mg/dl。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Support Vector Regression with Reduced Training Data A Deep Learning and Multimodal Ambient Sensing Framework for Human Activity Recognition Predicting Blood Glucose using an LSTM Neural Network License Plate Detection with Machine Learning Without Using Number Recognition Tool-assisted Surrogate Selection for Simulation Models in Energy Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1