License Plate Detection with Machine Learning Without Using Number Recognition

K. Ohzeki, Max Geigis, Stefan Schneider
{"title":"License Plate Detection with Machine Learning Without Using Number Recognition","authors":"K. Ohzeki, Max Geigis, Stefan Schneider","doi":"10.15439/2019F121","DOIUrl":null,"url":null,"abstract":"In autonomous driving, detecting vehicles together with their parts, such as a license plate is important. Many methods with using deep learning detect the license plate based on number recognition. However, there is an idea that the method using deep learning is difficult to use for autonomous driving because of the complexity in realizing deterministic verification. Therefore, development of a method that does not use deep learning(DL) has become important again. Although the authors have made the world’s best performance in 2018 for Caltech data with using DL, this concept has now turned to another research without using DL. The CT5L method is the latest type, that includes techniques of the continuity of vertical and horizontal black-and-white pixel values inside the plate, unique Hough transform, only vertical and horizontal lines are detected, the top five in the order of the number of votes to ensure good performance. In this paper, a method to determine the threshold value for binarizing input by machine learning is proposed, and good results are obtained. The detection rate is improved by about 20 points in percent as compared to the fixed case. It achieves the best performance among the conventional fixed threshold method, Otsu’s method, and the conventional method of JavaANPR.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In autonomous driving, detecting vehicles together with their parts, such as a license plate is important. Many methods with using deep learning detect the license plate based on number recognition. However, there is an idea that the method using deep learning is difficult to use for autonomous driving because of the complexity in realizing deterministic verification. Therefore, development of a method that does not use deep learning(DL) has become important again. Although the authors have made the world’s best performance in 2018 for Caltech data with using DL, this concept has now turned to another research without using DL. The CT5L method is the latest type, that includes techniques of the continuity of vertical and horizontal black-and-white pixel values inside the plate, unique Hough transform, only vertical and horizontal lines are detected, the top five in the order of the number of votes to ensure good performance. In this paper, a method to determine the threshold value for binarizing input by machine learning is proposed, and good results are obtained. The detection rate is improved by about 20 points in percent as compared to the fixed case. It achieves the best performance among the conventional fixed threshold method, Otsu’s method, and the conventional method of JavaANPR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不使用数字识别的机器学习车牌检测
在自动驾驶中,检测车辆及其部件(如车牌)非常重要。许多基于深度学习的车牌检测方法都是基于数字识别的。然而,有一种观点认为,由于实现确定性验证的复杂性,使用深度学习的方法难以用于自动驾驶。因此,开发一种不使用深度学习(DL)的方法再次变得重要起来。尽管作者在2018年使用深度学习为加州理工学院的数据创造了世界上最好的表现,但这个概念现在已经转向了另一项不使用深度学习的研究。CT5L方法是最新的一种方法,它包括板内垂直和水平的黑白像素值的连续性技术,独特的霍夫变换,只检测垂直和水平的线,按投票数排序的前五名,以确保良好的性能。本文提出了一种利用机器学习确定输入二值化阈值的方法,取得了较好的效果。与固定病例相比,检出率提高了约20个百分点。在传统的固定阈值法、Otsu的方法和传统的JavaANPR方法中,该方法的性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Support Vector Regression with Reduced Training Data A Deep Learning and Multimodal Ambient Sensing Framework for Human Activity Recognition Predicting Blood Glucose using an LSTM Neural Network License Plate Detection with Machine Learning Without Using Number Recognition Tool-assisted Surrogate Selection for Simulation Models in Energy Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1