{"title":"Characterisation of Ti:sapphire layers synthesized energy ion implantation","authors":"J. McCallum, L. D. Morpeth, M. Norman","doi":"10.1109/COMMAD.2002.1237312","DOIUrl":null,"url":null,"abstract":"High energy ion implantation has been investigated as a means of locally doping sapphire with Ti to form Ti:sapphire: a highly valued laser material. We have characterised the properties of Ti:sapphire layers formed by this process over a wide range of ion implantation and thermal processing conditions in order to understand the mechanisms which lead to stabilisation of Ti in the required optically-active 3+ chemical state. Characterisation by a wide variety of techniques including photoluminescence (PL) and luminescence lifetime has been used to provide a detailed picture of the annealing behaviour of the ion implanted layers and the dependence of formation of Ti/sup 3+/ on the implantation conditions, annealing ambient and temperature. For annealing below about 1300/spl deg/C, the Ti can be encouraged to form the 3+ state by co-implanting O into the substrates. For anneals above 1300 /spl deg/C, the annealing ambient plays a dominant role with a reducing environment producing the highest Ti/sup 3+/ PL output and co-implantation no longer being helpful. In this regime, the Ti/sup 3+/ luminescence yield increases rapidly with increasing temperature and the lifetime approaches that of bulk Ti:sapphire. The Ti also begins to diffuse substantially. We have also observed a substrate orientation dependence to the Ti/sup 3+/ formation. Implantation into a-axis oriented substrates results in a substantial improvement in the luminescence yield: an effect which is greater than the orientation-dependence of the absorption cross-section and suggests that damage recovery and activation of the Ti may be better in a-axis oriented sapphire.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High energy ion implantation has been investigated as a means of locally doping sapphire with Ti to form Ti:sapphire: a highly valued laser material. We have characterised the properties of Ti:sapphire layers formed by this process over a wide range of ion implantation and thermal processing conditions in order to understand the mechanisms which lead to stabilisation of Ti in the required optically-active 3+ chemical state. Characterisation by a wide variety of techniques including photoluminescence (PL) and luminescence lifetime has been used to provide a detailed picture of the annealing behaviour of the ion implanted layers and the dependence of formation of Ti/sup 3+/ on the implantation conditions, annealing ambient and temperature. For annealing below about 1300/spl deg/C, the Ti can be encouraged to form the 3+ state by co-implanting O into the substrates. For anneals above 1300 /spl deg/C, the annealing ambient plays a dominant role with a reducing environment producing the highest Ti/sup 3+/ PL output and co-implantation no longer being helpful. In this regime, the Ti/sup 3+/ luminescence yield increases rapidly with increasing temperature and the lifetime approaches that of bulk Ti:sapphire. The Ti also begins to diffuse substantially. We have also observed a substrate orientation dependence to the Ti/sup 3+/ formation. Implantation into a-axis oriented substrates results in a substantial improvement in the luminescence yield: an effect which is greater than the orientation-dependence of the absorption cross-section and suggests that damage recovery and activation of the Ti may be better in a-axis oriented sapphire.