A fast and robust text spotter

Siyang Qin, R. Manduchi
{"title":"A fast and robust text spotter","authors":"Siyang Qin, R. Manduchi","doi":"10.1109/WACV.2016.7477663","DOIUrl":null,"url":null,"abstract":"We introduce an algorithm for text detection and localization (\"spotting\") that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance.","PeriodicalId":124363,"journal":{"name":"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2016.7477663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We introduce an algorithm for text detection and localization ("spotting") that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个快速和强大的文本识别器
我们介绍了一种用于文本检测和定位(“定位”)的算法,该算法计算效率高,并产生最先进的结果。我们的系统使用多通道mser来检测大量有希望的区域,然后使用聚类方法对这些区域进行子样本。区域簇的代表被二值化,然后传递到一个深度网络。最后的行分组阶段形成词级分段。在ICDAR 2011和2015基准上,我们的算法以每帧1.2秒的计算成本分别获得82%和83%的f分。我们还推出了一个快三倍的版本,性能只略有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning the dynamic appearance and shape of facial action units Region graph based method for multi-object detection and tracking using depth cameras Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure A fast and robust text spotter Unifying diffuse and specular reflections for the photometric stereo problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1