Region graph based method for multi-object detection and tracking using depth cameras

Sachin Mehta, B. Prabhakaran
{"title":"Region graph based method for multi-object detection and tracking using depth cameras","authors":"Sachin Mehta, B. Prabhakaran","doi":"10.1109/WACV.2016.7477568","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-object detection and tracking method using depth cameras. Depth maps are very noisy and obscure in object detection. We first propose a region-based method to suppress high magnitude noise which cannot be filtered using spatial filters. Second, the proposed method detect Region of Interests by temporal learning which are then tracked using weighted graph-based approach. We demonstrate the performance of the proposed method on standard depth camera datasets with and without object occlusions. Experimental results show that the proposed, method is able to suppress high magnitude noise in depth maps and detect/track the objects (with and without occlusion).","PeriodicalId":124363,"journal":{"name":"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2016.7477568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a multi-object detection and tracking method using depth cameras. Depth maps are very noisy and obscure in object detection. We first propose a region-based method to suppress high magnitude noise which cannot be filtered using spatial filters. Second, the proposed method detect Region of Interests by temporal learning which are then tracked using weighted graph-based approach. We demonstrate the performance of the proposed method on standard depth camera datasets with and without object occlusions. Experimental results show that the proposed, method is able to suppress high magnitude noise in depth maps and detect/track the objects (with and without occlusion).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域图的深度相机多目标检测与跟踪方法
本文提出了一种基于深度相机的多目标检测与跟踪方法。深度图是非常嘈杂和模糊的目标检测。我们首先提出了一种基于区域的方法来抑制空间滤波器无法过滤的高量级噪声。其次,提出的方法通过时间学习检测兴趣区域,然后使用基于加权图的方法跟踪兴趣区域。我们演示了该方法在有和没有物体遮挡的标准深度相机数据集上的性能。实验结果表明,该方法能够有效地抑制深度图中的高强度噪声,并能有效地检测/跟踪目标(有遮挡和无遮挡)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning the dynamic appearance and shape of facial action units Region graph based method for multi-object detection and tracking using depth cameras Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure A fast and robust text spotter Unifying diffuse and specular reflections for the photometric stereo problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1