Automatic implementation of low-complexity QC-LDPC encoders

Georgios Tzimpragos, C. Kachris, D. Soudris, Ioannis Tomkos
{"title":"Automatic implementation of low-complexity QC-LDPC encoders","authors":"Georgios Tzimpragos, C. Kachris, D. Soudris, Ioannis Tomkos","doi":"10.1109/PATMOS.2013.6662186","DOIUrl":null,"url":null,"abstract":"Low Density Parity Check (LDPC) codes are a special class of error correction codes widely used in communication and disk storage systems, due to their Shannon limit approaching performance and their favorable structure. In this paper an Electronic Design Automation tool for the generation of synthesizable VHDL codes, implementing low-complexity Quasi-Cyclic LDPC (QC-LDPC) encoders is presented. The designs generated by the developed tool has been proved to exhibit hardware savings and greater throughput as compared to other published QC-LDPC encoder implementations and are based on a design methodology, where the signals in many cases are hard-wired in the LUTs and the cyclic-shifters and block-memories conventionally used, are eliminated. The presented tool also offers the advantage of providing designers with the ability to study the trade-offs in maximum clock frequency, throughput, resources utilization and power consumption, between architectures with different design parameters, enabling rapid Design Space Exploration.","PeriodicalId":287176,"journal":{"name":"2013 23rd International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2013.6662186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Low Density Parity Check (LDPC) codes are a special class of error correction codes widely used in communication and disk storage systems, due to their Shannon limit approaching performance and their favorable structure. In this paper an Electronic Design Automation tool for the generation of synthesizable VHDL codes, implementing low-complexity Quasi-Cyclic LDPC (QC-LDPC) encoders is presented. The designs generated by the developed tool has been proved to exhibit hardware savings and greater throughput as compared to other published QC-LDPC encoder implementations and are based on a design methodology, where the signals in many cases are hard-wired in the LUTs and the cyclic-shifters and block-memories conventionally used, are eliminated. The presented tool also offers the advantage of providing designers with the ability to study the trade-offs in maximum clock frequency, throughput, resources utilization and power consumption, between architectures with different design parameters, enabling rapid Design Space Exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动实现低复杂度的QC-LDPC编码器
低密度奇偶校验码(LDPC)是一类特殊的纠错码,由于其香农极限逼近性能和良好的结构特点,广泛应用于通信和磁盘存储系统中。本文提出了一种电子设计自动化工具,用于生成可合成的VHDL代码,实现低复杂度的准循环LDPC编码器。与其他已发布的QC-LDPC编码器实现相比,开发的工具生成的设计已被证明具有硬件节省和更高的吞吐量,并且基于一种设计方法,其中在许多情况下信号是硬连接在lut中,并且消除了传统使用的循环移位器和块存储器。该工具还为设计人员提供了在不同设计参数的架构之间研究最大时钟频率、吞吐量、资源利用率和功耗的权衡的能力,从而实现快速的设计空间探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peak power demand analysis and reduction by using battery buffers for monotonic controllers Automatic implementation of low-complexity QC-LDPC encoders A learning tool MOSFET model: A stepping-stone from the square-law model to BSIM4 A variation tolerant architecture for ultra low power multi-processor cluster Applying of Quality of Experience to system optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1