Discriminative transform for confidence estimation in Mandarin speech recognition

Gang Guo, Ren-Hua Wang
{"title":"Discriminative transform for confidence estimation in Mandarin speech recognition","authors":"Gang Guo, Ren-Hua Wang","doi":"10.1109/CHINSL.2004.1409638","DOIUrl":null,"url":null,"abstract":"In automatic speech recognition (ASR) applications, log likelihood ratio testing (LRT) is one of the most popular techniques to obtain a confidence measure (CM). Unlike the traditional (log likelihood ratio) LLR related method, we apply nonlinear transformations towards LLR before computing string-level CM. Different phonemes may have different transformation functions. Through suitable LLR transformations, the verification performance of those string-level CM may increase. Transformation functions are implemented by a multilayer perceptron (MLP). Two algorithms are used to optimize the parameters of the MLP: one is the minimum verification error (MVE) algorithm; another is the figure-of-merit (FOM) training algorithm. In our Mandarin command recognition system, the two methods remarkably improve the performance of confidence measures for out-of-vocabulary word rejection compared with the performance of standard LRT related CM, and we obtain a best 45.5% relative reduction in equal error rate (EER). In addition, in our Mandarin command recognition experiments, the FOM training algorithm outperforms the MVE algorithm even they share an approximately same best performance, while due to limited experimental setups in our experiments, which algorithm is the better still needs to be explored.","PeriodicalId":212562,"journal":{"name":"2004 International Symposium on Chinese Spoken Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2004.1409638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In automatic speech recognition (ASR) applications, log likelihood ratio testing (LRT) is one of the most popular techniques to obtain a confidence measure (CM). Unlike the traditional (log likelihood ratio) LLR related method, we apply nonlinear transformations towards LLR before computing string-level CM. Different phonemes may have different transformation functions. Through suitable LLR transformations, the verification performance of those string-level CM may increase. Transformation functions are implemented by a multilayer perceptron (MLP). Two algorithms are used to optimize the parameters of the MLP: one is the minimum verification error (MVE) algorithm; another is the figure-of-merit (FOM) training algorithm. In our Mandarin command recognition system, the two methods remarkably improve the performance of confidence measures for out-of-vocabulary word rejection compared with the performance of standard LRT related CM, and we obtain a best 45.5% relative reduction in equal error rate (EER). In addition, in our Mandarin command recognition experiments, the FOM training algorithm outperforms the MVE algorithm even they share an approximately same best performance, while due to limited experimental setups in our experiments, which algorithm is the better still needs to be explored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
判别变换在普通话语音识别中的置信度估计
在自动语音识别(ASR)应用中,对数似然比测试(LRT)是获得置信测度(CM)最常用的技术之一。与传统的(对数似然比)LLR相关方法不同,我们在计算字符串级CM之前对LLR进行非线性变换。不同的音素可能具有不同的转换功能。通过适当的LLR变换,可以提高字符串级CM的验证性能。变换函数由多层感知器(MLP)实现。采用两种算法对MLP的参数进行优化:一种是最小验证误差(MVE)算法;另一种是价值图(FOM)训练算法。在我们的普通话命令识别系统中,与标准LRT相关CM的性能相比,这两种方法显著提高了对词汇外词拒绝的置信度度量的性能,我们获得了等错误率(EER)的最佳相对降低45.5%。此外,在我们的普通话命令识别实验中,FOM训练算法优于MVE算法,即使它们的最佳性能大致相同,但由于我们实验中实验设置有限,哪种算法更好还有待探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discriminative transform for confidence estimation in Mandarin speech recognition A comparative study on various confidence measures in large vocabulary speech recognition Analysis of paraphrased corpus and lexical-based approach to Chinese paraphrasing Unseen handset mismatch compensation based on feature/model-space a priori knowledge interpolation for robust speaker recognition Use of direct modeling in natural language generation for Chinese and English translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1