Use of direct modeling in natural language generation for Chinese and English translation

Fu-hua Liu, Yuqing Gao
{"title":"Use of direct modeling in natural language generation for Chinese and English translation","authors":"Fu-hua Liu, Yuqing Gao","doi":"10.1109/CHINSL.2004.1409650","DOIUrl":null,"url":null,"abstract":"This paper proposes a new direct-modeling-based approach to improve the maximum entropy based natural language generation (NLG) in the IBM MASTOR system, an interlingua-based speech translation system. Due to the intrinsic disparity between Chinese and English sentences, the previous method employed only linguistic constituents from output language sentences to train the NLG model. The new algorithm exploits a direct-modeling scheme to admit linguistic constituent information from both source and target languages into the training process seamlessly when incorporating a concept padding scheme. When concept sequences from the top level of semantic parse trees are considered, the concept error rate (CER) is significantly reduced to 14.3%, compared to 23.9% in the baseline NLG. Similarly, when concept sequences from all levels of semantic parse trees are tested, the direct-modeling scheme yields a CER of 10.8% compared to 17.8% in the baseline. A sensible improvement on the overall translation is made when the direct-modeling scheme improves the BLEU score from 0.252 to 0.294.","PeriodicalId":212562,"journal":{"name":"2004 International Symposium on Chinese Spoken Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2004.1409650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new direct-modeling-based approach to improve the maximum entropy based natural language generation (NLG) in the IBM MASTOR system, an interlingua-based speech translation system. Due to the intrinsic disparity between Chinese and English sentences, the previous method employed only linguistic constituents from output language sentences to train the NLG model. The new algorithm exploits a direct-modeling scheme to admit linguistic constituent information from both source and target languages into the training process seamlessly when incorporating a concept padding scheme. When concept sequences from the top level of semantic parse trees are considered, the concept error rate (CER) is significantly reduced to 14.3%, compared to 23.9% in the baseline NLG. Similarly, when concept sequences from all levels of semantic parse trees are tested, the direct-modeling scheme yields a CER of 10.8% compared to 17.8% in the baseline. A sensible improvement on the overall translation is made when the direct-modeling scheme improves the BLEU score from 0.252 to 0.294.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直接建模在汉英翻译自然语言生成中的应用
本文提出了一种新的基于直接建模的方法来改进IBM MASTOR系统中基于最大熵的自然语言生成(NLG)。由于汉语和英语句子的内在差异,以前的方法只使用输出语言句子中的语言成分来训练NLG模型。新算法利用直接建模方案,在结合概念填充方案的同时,将源语言和目标语言的语言成分信息无缝地纳入训练过程。当考虑来自语义解析树顶层的概念序列时,概念错误率(CER)显著降低到14.3%,而基线NLG的错误率为23.9%。同样,当测试来自所有级别语义解析树的概念序列时,直接建模方案的CER为10.8%,而基线方案为17.8%。当直接建模方案将BLEU分数从0.252提高到0.294时,对整体翻译有了明显的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discriminative transform for confidence estimation in Mandarin speech recognition A comparative study on various confidence measures in large vocabulary speech recognition Analysis of paraphrased corpus and lexical-based approach to Chinese paraphrasing Unseen handset mismatch compensation based on feature/model-space a priori knowledge interpolation for robust speaker recognition Use of direct modeling in natural language generation for Chinese and English translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1