A comparative study of dynamic state estimation approaches for detecting loss of excitation failures

Pablo Marchi, P. G. Estevez, C. Galarza
{"title":"A comparative study of dynamic state estimation approaches for detecting loss of excitation failures","authors":"Pablo Marchi, P. G. Estevez, C. Galarza","doi":"10.1109/ARGENCON55245.2022.9939740","DOIUrl":null,"url":null,"abstract":"Loss of excitation (LOE) is a characteristic failure of synchronous generators. In this article, we present a comparative study between different dynamic state estimation approaches to efficiently detect LOE. In this context, multiple modes of operation of the system are modeled in order to implement a faulty mode detection and diagnosis algorithm. This algorithm is continually monitoring the state variables of the generator to decide, in real-time, the most probable mode of operation. The main goal is to enhance the estimator robustness against mismatches between the model used and the real excitation system. To achieve this goal, we made a comparison between considering the field voltage as an unknown input and treating it as a constant with a high component of noise. Simulations using a two-area power system have shown that LOE detection times are not significantly degraded even if the the excitation system incorporates non-modeled effects.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9939740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Loss of excitation (LOE) is a characteristic failure of synchronous generators. In this article, we present a comparative study between different dynamic state estimation approaches to efficiently detect LOE. In this context, multiple modes of operation of the system are modeled in order to implement a faulty mode detection and diagnosis algorithm. This algorithm is continually monitoring the state variables of the generator to decide, in real-time, the most probable mode of operation. The main goal is to enhance the estimator robustness against mismatches between the model used and the real excitation system. To achieve this goal, we made a comparison between considering the field voltage as an unknown input and treating it as a constant with a high component of noise. Simulations using a two-area power system have shown that LOE detection times are not significantly degraded even if the the excitation system incorporates non-modeled effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态状态估计方法检测激励失效损失的比较研究
失磁是同步发电机的一种典型故障。在本文中,我们对不同的动态状态估计方法进行了比较研究,以有效地检测LOE。在这种情况下,为了实现故障模式检测和诊断算法,对系统的多种运行模式进行了建模。该算法持续监测发电机的状态变量,实时确定最可能的运行模式。主要目标是提高估计器的鲁棒性,以防止模型与实际励磁系统之间的不匹配。为了实现这一目标,我们比较了将场电压视为未知输入和将其视为具有高噪声分量的常数。使用双区电力系统的仿真表明,即使励磁系统包含非建模效应,LOE检测时间也不会显着降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Propuestas de normativas para la disposición final de equipamientos de un parque eólico al finalizar su vida productiva Proyecto Laboratorios remotos en carreras de ingeniería de la Universidad Nacional de Tucumán Control de un convertidor DC-DC con puentes duales activos para adaptar niveles de tensión en microrredes de DC usando linealización por realimentación Las Competencias Transversales en Ingeniería. El Seminario Taller Como Herramienta Metodológica Procedimiento de sintonizado de tanques resonantes LCC para carga inalámbrica de vehículos eléctricos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1