S. De Ridder, P. Manfredi, J. De Geest, T. Dhaene, D. De Zutter, D. Vande Ginste
{"title":"A novel methodology to create generative statistical models of interconnects","authors":"S. De Ridder, P. Manfredi, J. De Geest, T. Dhaene, D. De Zutter, D. Vande Ginste","doi":"10.1109/EDAPS.2016.7893128","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of constructing a generative statistical model for an interconnect starting from a limited set of S-parameter samples, which are obtained by simulating or measuring the interconnect for a few random realizations of its stochastic physical properties. These original samples are first converted into a pole-residue representation with common poles. The corresponding residues are modeled as a correlated stochastic process by means of principal component analysis and kernel density estimation. The obtained model allows generating new samples with similar statistics as the original data. A passivity check is performed over the generated samples to retain only passive data. The proposed approach is applied to a representative coupled microstrip line example.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper addresses the problem of constructing a generative statistical model for an interconnect starting from a limited set of S-parameter samples, which are obtained by simulating or measuring the interconnect for a few random realizations of its stochastic physical properties. These original samples are first converted into a pole-residue representation with common poles. The corresponding residues are modeled as a correlated stochastic process by means of principal component analysis and kernel density estimation. The obtained model allows generating new samples with similar statistics as the original data. A passivity check is performed over the generated samples to retain only passive data. The proposed approach is applied to a representative coupled microstrip line example.