High-sensitivity testing techniques for laser optics

B. Li, Z. Qu, Y. Wang, Y. Han, W. Gao
{"title":"High-sensitivity testing techniques for laser optics","authors":"B. Li, Z. Qu, Y. Wang, Y. Han, W. Gao","doi":"10.1117/12.888254","DOIUrl":null,"url":null,"abstract":"The absorptance and high reflectance measurements of laser optics are presented. In the absorptance measurement, the laser calorimetry (LC) technique is investigated. A rigorous theoretical model describing the laser irradiation induced temperature rise in a coated sample, in which both the finite thermal conductivity and the finite size of sample are taken into account, is developed to optimize the temperature detection geometry to further improve the accuracy of the absorptance measurement. For the high reflectivity measurement, an optical feedback cavity ring-down (OF-CRD) technique, in which a continuous-wave (CW) Fabry-Perot (FP) diode laser is used as the light source, is employed for high reflectivity measurement. The linear and V-shaped schemes are investigated to measure the reflectivity of cavity mirrors and planar test mirrors, respectively. For cavity mirrors with reflectance larger than 99.99%, the measurement error is less than 1ppm.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.888254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The absorptance and high reflectance measurements of laser optics are presented. In the absorptance measurement, the laser calorimetry (LC) technique is investigated. A rigorous theoretical model describing the laser irradiation induced temperature rise in a coated sample, in which both the finite thermal conductivity and the finite size of sample are taken into account, is developed to optimize the temperature detection geometry to further improve the accuracy of the absorptance measurement. For the high reflectivity measurement, an optical feedback cavity ring-down (OF-CRD) technique, in which a continuous-wave (CW) Fabry-Perot (FP) diode laser is used as the light source, is employed for high reflectivity measurement. The linear and V-shaped schemes are investigated to measure the reflectivity of cavity mirrors and planar test mirrors, respectively. For cavity mirrors with reflectance larger than 99.99%, the measurement error is less than 1ppm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光光学的高灵敏度测试技术
介绍了激光光学的吸光度和高反射率测量。在吸光度测量中,研究了激光量热法(LC)技术。为了优化温度探测几何结构,进一步提高吸光度测量的精度,建立了考虑有限导热系数和有限样品尺寸的激光辐照诱导涂层样品温升的理论模型。在高反射率测量中,采用连续波(CW)法布里-珀罗(FP)二极管激光器作为光源的光反馈腔衰荡(OF-CRD)技术进行高反射率测量。分别研究了测量腔镜和平面测试镜反射率的线性方案和v形方案。对于反射率大于99.99%的腔镜,测量误差小于1ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studies on a novel structure of ZnO/AlN/ diamond for SAW device applications Effect of UV and vacuum treatment on stability of WO3 gas sensing films High-sensitivity testing techniques for laser optics Effect of deposition rate on the DUV/VUV reflectance of MgF2protected aluminum mirrors with e-beam evaporation Temperature dependence of photoluminescence, Raman scattering, and transmittance spectra of anatase Ti1-xFexO2 nanocrystalline films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1