Looking for Trouble: Informative Planning for Safe Trajectories with Occlusions

Barry Gilhuly, Armin Sadeghi, P. Yadmellat, K. Rezaee, Stephen L. Smith
{"title":"Looking for Trouble: Informative Planning for Safe Trajectories with Occlusions","authors":"Barry Gilhuly, Armin Sadeghi, P. Yadmellat, K. Rezaee, Stephen L. Smith","doi":"10.1109/icra46639.2022.9811994","DOIUrl":null,"url":null,"abstract":"Planning a safe trajectory for an ego vehicle through an environment with occluded regions is a challenging task. Existing methods use some combination of metrics to evaluate a trajectory, either taking a worst case view or allowing for some probabilistic estimate, to eliminate or minimize the risk of collision respectively. Typically, these approaches assume occluded regions of the environment are unsafe and must be avoided, resulting in overly conservative trajectories-particularly when there are no hidden risks present. We propose a local trajectory planning algorithm which generates safe trajectories that maximize observations on un-certain regions. In particular, we seek to gain information on occluded areas that are most likely to pose a risk to the ego vehicle on its future path. Calculating the information gain is a computationally complex problem; our method approximates the maximum information gain and results in vehicle motion that remains safe but is less conservative than state-of-the-art approaches. We evaluate the performance of the proposed method within the CARLA simulator in different scenarios.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Planning a safe trajectory for an ego vehicle through an environment with occluded regions is a challenging task. Existing methods use some combination of metrics to evaluate a trajectory, either taking a worst case view or allowing for some probabilistic estimate, to eliminate or minimize the risk of collision respectively. Typically, these approaches assume occluded regions of the environment are unsafe and must be avoided, resulting in overly conservative trajectories-particularly when there are no hidden risks present. We propose a local trajectory planning algorithm which generates safe trajectories that maximize observations on un-certain regions. In particular, we seek to gain information on occluded areas that are most likely to pose a risk to the ego vehicle on its future path. Calculating the information gain is a computationally complex problem; our method approximates the maximum information gain and results in vehicle motion that remains safe but is less conservative than state-of-the-art approaches. We evaluate the performance of the proposed method within the CARLA simulator in different scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找麻烦:信息规划与闭塞的安全轨迹
为自动驾驶汽车规划安全的行驶轨迹是一项具有挑战性的任务。现有的方法使用一些度量的组合来评估轨迹,要么采取最坏情况的观点,要么允许一些概率估计,分别消除或最小化碰撞的风险。通常,这些方法假设环境中被遮挡的区域是不安全的,必须避开,导致轨迹过于保守——特别是在没有隐藏风险的情况下。我们提出了一种局部轨迹规划算法,该算法生成安全轨迹,使不确定区域的观测值最大化。特别是,我们寻求获得关于最有可能对自我车辆未来路径构成风险的闭塞区域的信息。计算信息增益是一个计算复杂的问题;我们的方法近似于最大信息增益,结果在车辆运动中保持安全,但比最先进的方法更保守。我们在不同的场景下在CARLA模拟器中评估了所提出的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1