SIMSnn: A Weight-Agnostic ReRAM-based Search-In-Memory Engine for SNN Acceleration

Fangxin Liu, Wenbo Zhao, Zongwu Wang, Xiaokang Yang, Li Jiang
{"title":"SIMSnn: A Weight-Agnostic ReRAM-based Search-In-Memory Engine for SNN Acceleration","authors":"Fangxin Liu, Wenbo Zhao, Zongwu Wang, Xiaokang Yang, Li Jiang","doi":"10.23919/DATE56975.2023.10136973","DOIUrl":null,"url":null,"abstract":"Bio-plausible spiking neural networks (SNNs) have gained a great momentum due to its inherent efficiency of processing event-driven information. The dominant computation-matrix bit-wise And-Add operations-in SNN is naturally fit for process-in-memory architecture (PIM). The long input spike train of SNN and the bit-serial processing mechanism of PIM, however, incur considerable latency and frequent analog-to-digital conversion, offsetting the performance gain and energy-efficiency. In this paper, we propose a novel Search-in-Memory (SIM) architecture to accelerate the SNN inference, named SIMSnn. Rather than processing the input bit-by-bit over multiple time steps, SIMSnn can take in a sequence of spikes and search the result by parallel associative matches in the CAM crossbar. As a weight-agnostic SNN accelerator, SIMSnn can adapt to various evolving SNNs without rewriting the crossbar array.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-plausible spiking neural networks (SNNs) have gained a great momentum due to its inherent efficiency of processing event-driven information. The dominant computation-matrix bit-wise And-Add operations-in SNN is naturally fit for process-in-memory architecture (PIM). The long input spike train of SNN and the bit-serial processing mechanism of PIM, however, incur considerable latency and frequent analog-to-digital conversion, offsetting the performance gain and energy-efficiency. In this paper, we propose a novel Search-in-Memory (SIM) architecture to accelerate the SNN inference, named SIMSnn. Rather than processing the input bit-by-bit over multiple time steps, SIMSnn can take in a sequence of spikes and search the result by parallel associative matches in the CAM crossbar. As a weight-agnostic SNN accelerator, SIMSnn can adapt to various evolving SNNs without rewriting the crossbar array.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIMSnn:一种权重不可知的基于reram的SNN加速搜索引擎
生物似然脉冲神经网络(SNNs)由于其处理事件驱动信息的固有效率而获得了巨大的发展势头。SNN中占主导地位的计算矩阵逐位And-Add操作自然适合于内存中的进程体系结构(PIM)。然而,SNN的长输入尖峰串和PIM的位串行处理机制会导致相当大的延迟和频繁的模拟-数字转换,抵消了性能增益和能效。在本文中,我们提出了一种新的内存搜索(SIM)架构来加速SNN推理,称为SIMSnn。与在多个时间步骤中逐位处理输入不同,SIMSnn可以采用一系列尖峰并通过CAM交叉条中的并行关联匹配来搜索结果。作为一种权重不可知的SNN加速器,SIMSnn可以在不重写交叉棒阵列的情况下适应各种进化的SNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing a RISC-V architecture: A dynamic approach Perspector: Benchmarking Benchmark Suites Fast Behavioural RTL Simulation of 10B Transistor SoC Designs with Metro-Mpi Lightspeed Binary Neural Networks using Optical Phase-Change Materials Time Series-based Driving Event Recognition for Two Wheelers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1