Reconfigured multichip-on-wafer (mCoW) Cu/oxide hybrid bonding technology for ultra-high density 3D integration using recessed oxide, thin glue adhesive, and thin metal capping layers
K. Lee, C. Nagai, A. Nakamura, Hiroki Aizawa, J. Bea, M. Koyanagi, H. Hashiguchi, T. Fukushima, Tanaka Tanaka
{"title":"Reconfigured multichip-on-wafer (mCoW) Cu/oxide hybrid bonding technology for ultra-high density 3D integration using recessed oxide, thin glue adhesive, and thin metal capping layers","authors":"K. Lee, C. Nagai, A. Nakamura, Hiroki Aizawa, J. Bea, M. Koyanagi, H. Hashiguchi, T. Fukushima, Tanaka Tanaka","doi":"10.1109/3DIC.2015.7334471","DOIUrl":null,"url":null,"abstract":"High yield reconfigured multichip-on-wafer (mCoW) Cu/oxide hybrid bonding technology is proposed for ultra-high density 2.5D/3D integration applications. New mCoW hybrid bonding technology use shallow-recess oxide structure, electro-less plated capping layers, and thin glue adhesive layer below 1um to avoid the issues of current standard CoW bonding technology. Multi numbers of TEG die with 7mm × 23mm size are simultaneously aligned with high accuracy around 1um using chip self-assembly technology and thermal-compression bonded by in batch. In the TEG chip, totally 684,000 electrode daisy chain comprising of 3μm diameter/6um pitch tiny Cu electrodes are well intact joined by new reconfigured mCoW hybrid bonding technology.","PeriodicalId":253726,"journal":{"name":"2015 International 3D Systems Integration Conference (3DIC)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International 3D Systems Integration Conference (3DIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIC.2015.7334471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
High yield reconfigured multichip-on-wafer (mCoW) Cu/oxide hybrid bonding technology is proposed for ultra-high density 2.5D/3D integration applications. New mCoW hybrid bonding technology use shallow-recess oxide structure, electro-less plated capping layers, and thin glue adhesive layer below 1um to avoid the issues of current standard CoW bonding technology. Multi numbers of TEG die with 7mm × 23mm size are simultaneously aligned with high accuracy around 1um using chip self-assembly technology and thermal-compression bonded by in batch. In the TEG chip, totally 684,000 electrode daisy chain comprising of 3μm diameter/6um pitch tiny Cu electrodes are well intact joined by new reconfigured mCoW hybrid bonding technology.