SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration

Alexander Poeppel, Christian Eymüller, W. Reif
{"title":"SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration","authors":"Alexander Poeppel, Christian Eymüller, W. Reif","doi":"10.1109/ICARA56516.2023.10125740","DOIUrl":null,"url":null,"abstract":"Human-robot-collaboration (HRC) requires fast and reliable sensor data to ensure the safety of humans in the workspace. Current solutions for processing multi-modal sensor data in HRC are either highly performant in specific scenarios or offer more flexibility at the cost of decreased performance. Our GPU accelerated SensorClouds framework, however, combines both high flexibility and real-time performance. The architecture aids developers in quickly implementing complex HRC applications with multiple sensors by encapsulating all functionality into reusable modules. The resulting pipeline is optimized by the framework and executed in real-time.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human-robot-collaboration (HRC) requires fast and reliable sensor data to ensure the safety of humans in the workspace. Current solutions for processing multi-modal sensor data in HRC are either highly performant in specific scenarios or offer more flexibility at the cost of decreased performance. Our GPU accelerated SensorClouds framework, however, combines both high flexibility and real-time performance. The architecture aids developers in quickly implementing complex HRC applications with multiple sensors by encapsulating all functionality into reusable modules. The resulting pipeline is optimized by the framework and executed in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器云:用于人机协作的多模态传感器数据实时处理的框架
人-机器人协作(HRC)需要快速可靠的传感器数据来确保工作空间中人类的安全。目前在HRC中处理多模态传感器数据的解决方案要么在特定场景中表现优异,要么以降低性能为代价提供更大的灵活性。然而,我们的GPU加速sensorcloud框架结合了高灵活性和实时性能。该体系结构通过将所有功能封装到可重用模块中,帮助开发人员快速实现具有多个传感器的复杂HRC应用程序。生成的管道由框架优化并实时执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1