{"title":"Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions","authors":"Anran Li, H. Gurocak","doi":"10.1109/ICARA56516.2023.10126056","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptation of the mobile robot bug algorithm to control a cobot to reduce collisions with a human worker in the same work cell. Collaborative robots (cobots) are popular in industry because they enable close collaboration between a human and a robot. Although the cobot can stop when a collision happens, it is not a pleasant or safe working environment for the human to be hit by the cobot possibly multiple times a day. The proposed approach uses inexpensive proximity sensors on the cobot and a simple algorithm. An adjustable yaw angle is introduced to the algorithm to further reduce collisions. Results from pick-and-place experiments with UR 10 cobot show significant reduction of collisions.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10126056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an adaptation of the mobile robot bug algorithm to control a cobot to reduce collisions with a human worker in the same work cell. Collaborative robots (cobots) are popular in industry because they enable close collaboration between a human and a robot. Although the cobot can stop when a collision happens, it is not a pleasant or safe working environment for the human to be hit by the cobot possibly multiple times a day. The proposed approach uses inexpensive proximity sensors on the cobot and a simple algorithm. An adjustable yaw angle is introduced to the algorithm to further reduce collisions. Results from pick-and-place experiments with UR 10 cobot show significant reduction of collisions.