Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR

Tianli Zhang, Yuefeng Cao, Shumin Zhang, Chixiao Chen, Fan Ye, Junyan Ren
{"title":"Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR","authors":"Tianli Zhang, Yuefeng Cao, Shumin Zhang, Chixiao Chen, Fan Ye, Junyan Ren","doi":"10.1109/ESSCIRC.2019.8902873","DOIUrl":null,"url":null,"abstract":"The paper presents a machine-learning based calibration scheme for split pipelined-SAR ADCs with open-loop residual amplifiers. Different from conventional methods, the proposed scheme is prior-knowledge-free. The scheme adopts a two-layer neural network, and directly uses the bit-wise comparator results as inputs. The neural network compensates the distortion and can be compressed by 75% due to the network’s sparsity. A 14-bit 60-MSps split pipelined-SAR ADC with gain boosted dynamic amplifiers is fabricated in 28nm CMOS to validate the scheme. The measurement results show the ADC achieves an SFDR of 93.7 dB and an ENOB of 10.7b, consuming 2.79 mW. To the authors’ knowledge, it achieves the best SFDR among Nyquist ADCs with open-loop amplifiers.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper presents a machine-learning based calibration scheme for split pipelined-SAR ADCs with open-loop residual amplifiers. Different from conventional methods, the proposed scheme is prior-knowledge-free. The scheme adopts a two-layer neural network, and directly uses the bit-wise comparator results as inputs. The neural network compensates the distortion and can be compressed by 75% due to the network’s sparsity. A 14-bit 60-MSps split pipelined-SAR ADC with gain boosted dynamic amplifiers is fabricated in 28nm CMOS to validate the scheme. The measurement results show the ADC achieves an SFDR of 93.7 dB and an ENOB of 10.7b, consuming 2.79 mW. To the authors’ knowledge, it achieves the best SFDR among Nyquist ADCs with open-loop amplifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的开环分路管道sar adc无先验知识校准实现93.7 db SFDR
提出了一种基于机器学习的开环残余放大器分路流水式sar adc标定方案。与传统方法不同,该方法不需要先验知识。该方案采用双层神经网络,直接使用逐位比较器结果作为输入。神经网络补偿了失真,由于网络的稀疏性,可以压缩75%。在28nm CMOS上制作了一个带增益增强动态放大器的14位60 msps分路流水线sar ADC来验证该方案。测量结果表明,该ADC的SFDR为93.7 dB, ENOB为10.7b,功耗为2.79 mW。据作者所知,它在带开环放大器的奈奎斯特adc中实现了最好的SFDR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 78 fs RMS Jitter Injection-Locked Clock Multiplier Using Transformer-Based Ultra-Low-Power VCO An Integrated Programmable High-Voltage Bipolar Pulser With Embedded Transmit/Receive Switch for Miniature Ultrasound Probes Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR An 18 dBm 155-180 GHz SiGe Power Amplifier Using a 4-Way T-Junction Combining Network A Bidirectional Brain Computer Interface with 64-Channel Recording, Resonant Stimulation and Artifact Suppression in Standard 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1