Relative Track Metrics to Determine Model Mismatch

Erik Blasch, A. Rice, Chun Yang, I. Kadar
{"title":"Relative Track Metrics to Determine Model Mismatch","authors":"Erik Blasch, A. Rice, Chun Yang, I. Kadar","doi":"10.1109/NAECON.2008.4806556","DOIUrl":null,"url":null,"abstract":"Tracking performance is a function of data quality, tracker type, and target maneuverability. Many contemporary tracking methods are useful for various operating conditions. To determine nonlinear tracking performance independent of the scenario, we wish to explore metrics that highlight the tracker capability. With the emerging relative track metrics, as opposed to root-mean-square error (RMS) calculations, we explore the Averaged Normalized Estimation Error Squared (ANESS) and Non Credibility Index (NCI) to determine tracker quality independent of the data. This paper demonstrates the usefulness of relative metrics to determine a model mismatch, or more specifically a bias in the model, using the probabilistic data association filter, the unscented Kalman filter, and the particle filter.","PeriodicalId":254758,"journal":{"name":"2008 IEEE National Aerospace and Electronics Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2008.4806556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Tracking performance is a function of data quality, tracker type, and target maneuverability. Many contemporary tracking methods are useful for various operating conditions. To determine nonlinear tracking performance independent of the scenario, we wish to explore metrics that highlight the tracker capability. With the emerging relative track metrics, as opposed to root-mean-square error (RMS) calculations, we explore the Averaged Normalized Estimation Error Squared (ANESS) and Non Credibility Index (NCI) to determine tracker quality independent of the data. This paper demonstrates the usefulness of relative metrics to determine a model mismatch, or more specifically a bias in the model, using the probabilistic data association filter, the unscented Kalman filter, and the particle filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定模型不匹配的相对跟踪度量
跟踪性能是数据质量、跟踪器类型和目标可操作性的函数。许多现代跟踪方法适用于各种操作条件。为了确定独立于场景的非线性跟踪性能,我们希望探索强调跟踪器功能的度量。与均方根误差(RMS)计算相反,随着相对跟踪指标的出现,我们探索了平均归一化估计误差平方(ANESS)和非可信度指数(NCI),以确定独立于数据的跟踪器质量。本文演示了使用概率数据关联滤波器、无气味卡尔曼滤波器和粒子滤波器来确定模型不匹配或更具体地说是模型中的偏差的相对度量的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Protein-Based 3-D Memory in SPICE Image Registration using Polar Wavelets Untethered On-The-Fly Radio Assembly With Wires-On-Demand Integration of Vision based SLAM and Nonlinear Filter for Simple Mobile Robot Navigation Relative Track Metrics to Determine Model Mismatch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1