An implicit coupling scheme for the use of long time steps in stable self-consistent particle simulation of semiconductor devices with high doping levels
{"title":"An implicit coupling scheme for the use of long time steps in stable self-consistent particle simulation of semiconductor devices with high doping levels","authors":"D. Liebig, A. Abou Elnour, K. Schunemann","doi":"10.1109/SISPAD.1996.865266","DOIUrl":null,"url":null,"abstract":"The aim of the present work is to introduce an efficient iterative implicit coupling scheme for the stochastic particle simulation of semiconductor devices which allows to use long time-steps between successive solutions of the Poisson equation even if the maximum plasma frequency is very high, and which easily can incorporate particle-mesh coupling schemes which guarantee weak self-forces and to first order can also incorporate exact integration of the equations of motion across cell-boundaries of the Poisson-grid. The new method can directly improve the computational efficiency of many particle simulators (standard MC, full-band MC, CA-methods) by an order of magnitude if devices with high free carrier densities are under investigation.","PeriodicalId":341161,"journal":{"name":"1996 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD '96 (IEEE Cat. No.96TH8095)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD '96 (IEEE Cat. No.96TH8095)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.1996.865266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of the present work is to introduce an efficient iterative implicit coupling scheme for the stochastic particle simulation of semiconductor devices which allows to use long time-steps between successive solutions of the Poisson equation even if the maximum plasma frequency is very high, and which easily can incorporate particle-mesh coupling schemes which guarantee weak self-forces and to first order can also incorporate exact integration of the equations of motion across cell-boundaries of the Poisson-grid. The new method can directly improve the computational efficiency of many particle simulators (standard MC, full-band MC, CA-methods) by an order of magnitude if devices with high free carrier densities are under investigation.