Distribution Grid Topology Calibration Based on a Data-Driven Approach

M. Subasic, G. D. Ave, M. Giuntoli, P. Noglik, K. Knezović, Dmitry Shchetinin, W. Peterson, Wenping Li
{"title":"Distribution Grid Topology Calibration Based on a Data-Driven Approach","authors":"M. Subasic, G. D. Ave, M. Giuntoli, P. Noglik, K. Knezović, Dmitry Shchetinin, W. Peterson, Wenping Li","doi":"10.1109/ISGT-Europe54678.2022.9960588","DOIUrl":null,"url":null,"abstract":"With the introduction of advanced metering infrastructure and smart meters at the customers' premises, an unprecedented amount of data becomes available to improve and validate distribution grid models. Therefore, assuming there are distribution grid topological errors, data-driven methods can utilize smart meter data to remedy the real-time topology in which the grid is currently operated and correct the topology errors stored in the database of the distribution management system. In this work, a hybrid methodology, encompassing graph theory and data-driven approaches based on statistical inference, is used to identify the errors in the underlying operational grid topology models. The methodology relies on voltage magnitude timeseries data, which are easily obtained from smart meters.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the introduction of advanced metering infrastructure and smart meters at the customers' premises, an unprecedented amount of data becomes available to improve and validate distribution grid models. Therefore, assuming there are distribution grid topological errors, data-driven methods can utilize smart meter data to remedy the real-time topology in which the grid is currently operated and correct the topology errors stored in the database of the distribution management system. In this work, a hybrid methodology, encompassing graph theory and data-driven approaches based on statistical inference, is used to identify the errors in the underlying operational grid topology models. The methodology relies on voltage magnitude timeseries data, which are easily obtained from smart meters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据驱动方法的配电网拓扑标定
随着先进的计量基础设施和智能电表在客户场所的引入,前所未有的数据量可以用于改进和验证配电网模型。因此,假设存在配电网拓扑错误,数据驱动方法可以利用智能电表数据对电网当前运行的实时拓扑进行修正,并对存储在配电管理系统数据库中的拓扑错误进行修正。在这项工作中,一种混合方法,包括图论和基于统计推断的数据驱动方法,用于识别底层操作网格拓扑模型中的错误。该方法依赖于电压幅值时间序列数据,这些数据很容易从智能电表中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of HVDC Fault Ride-Through and Continuous Reactive Current Support on Transient Stability in Meshed AC/DC Transmission Grids On the role of demand response and key CCHP technologies for increased integration of variable renewable energy into a microgrid Recuperation of railcar braking energy using energy storage at station level Towards Risk Assessment of Smart Grids with Heterogeneous Assets Application of shunt active power filters in active distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1