Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification

Navneel Prasad, Rajeshni Singh, S. Lal
{"title":"Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification","authors":"Navneel Prasad, Rajeshni Singh, S. Lal","doi":"10.1109/CIMSIM.2013.14","DOIUrl":null,"url":null,"abstract":"In this paper we compare the performance of back propagation and resilient propagation algorithms in training neural networks for spam classification. Back propagation algorithm is known to have issues such as slow convergence, and stagnation of neural network weights around local optima. Researchers have proposed resilient propagation as an alternative. Resilient propagation and back propagation are very much similar except for the weight update routine. Resilient propagation does not take into account the value of the partial derivative (error gradient), but rather considers only the sign of the error gradient to indicate the direction of the weight update. We show that resilient propagation yields faster convergence and higher accuracy on the UCI Spambase dataset.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In this paper we compare the performance of back propagation and resilient propagation algorithms in training neural networks for spam classification. Back propagation algorithm is known to have issues such as slow convergence, and stagnation of neural network weights around local optima. Researchers have proposed resilient propagation as an alternative. Resilient propagation and back propagation are very much similar except for the weight update routine. Resilient propagation does not take into account the value of the partial derivative (error gradient), but rather considers only the sign of the error gradient to indicate the direction of the weight update. We show that resilient propagation yields faster convergence and higher accuracy on the UCI Spambase dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垃圾邮件分类中反向传播与弹性传播算法的比较
本文比较了反向传播算法和弹性传播算法在训练神经网络分类垃圾邮件中的性能。众所周知,反向传播算法存在收敛速度慢、神经网络权值在局部最优点附近停滞等问题。研究人员提出了弹性繁殖作为替代方案。弹性传播和反向传播非常相似,除了权值更新程序。弹性传播不考虑偏导数(误差梯度)的值,而是只考虑误差梯度的符号来指示权重更新的方向。我们展示了弹性传播在UCI Spambase数据集上产生更快的收敛和更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1