Vowel-non vowel decision using neural networks and rules

J. Sirigos, V. Darsinos, N. Fakotakis, G. Kokkinakis
{"title":"Vowel-non vowel decision using neural networks and rules","authors":"J. Sirigos, V. Darsinos, N. Fakotakis, G. Kokkinakis","doi":"10.1109/ICECS.1996.582917","DOIUrl":null,"url":null,"abstract":"This paper describes a speaker independent vowel/non-vowel classifier based on neural networks and several rules. RASTA-PLP analysis of the speech signal resulting to mel-cepstral coefficients and a formant tracking method are used in order to provide the feature vectors for the MLP. To train and test the system we used a part of the TIMIT database. The results indicate that the performance of this classifier for speaker independent vowel classification is approximately 98.5% so it can be favorably used for speaker recognition or speech labeling purposes.","PeriodicalId":402369,"journal":{"name":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.1996.582917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a speaker independent vowel/non-vowel classifier based on neural networks and several rules. RASTA-PLP analysis of the speech signal resulting to mel-cepstral coefficients and a formant tracking method are used in order to provide the feature vectors for the MLP. To train and test the system we used a part of the TIMIT database. The results indicate that the performance of this classifier for speaker independent vowel classification is approximately 98.5% so it can be favorably used for speaker recognition or speech labeling purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用神经网络和规则进行元音-非元音决策
本文提出了一种基于神经网络和若干规则的独立于说话人的元音/非元音分类器。为了提供MLP的特征向量,使用了语音信号的RASTA-PLP分析,得到了mel-倒谱系数和形成峰跟踪方法。为了训练和测试系统,我们使用了TIMIT数据库的一部分。结果表明,该分类器对说话人独立的元音分类性能约为98.5%,可以很好地用于说话人识别或语音标注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-power digital PLL with one cycle frequency lock-in time and large frequency-multiplication factor for advanced power management Application of direct iteration in harmonic balance analysis of LC oscillators A Hilbert fractal codec for region oriented compression of color images Wideband CMOS analog cells for video and wireless communications Programmable sampled data filter with low sensitivity implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1