A Coordinated Multiagent Reinforcement Learning Method Using Chicken Game

Zihui Wang, Zhi Wang, Chunlin Chen
{"title":"A Coordinated Multiagent Reinforcement Learning Method Using Chicken Game","authors":"Zihui Wang, Zhi Wang, Chunlin Chen","doi":"10.1109/ICNSC48988.2020.9238072","DOIUrl":null,"url":null,"abstract":"Sparse interaction in multiagent tasks is an important approach to reduce the exponential computational cost for multiagent reinforcement learning (MARL) systems. How to select proper equilibrium solutions is the key to find the optimal policy and to improve the learning performance when collisions occur. We propose a new MARL algorithm, Efficient Coordination based MARL with Sparse Interactions (ECoSI), using the sparse interaction framework and an efficient coordination mechanism, where equilibrium solutions are selected via Nash equilibrium and Chicken game. ECoSI not only separates the Q-value updating rule in joint states from non-joint states with sparse interactions to achieve lower computation and storage complexity, but also takes advantage of efficient coordination with equilibrium solutions to find the optimal policy. Experimental results demonstrate the effectiveness and robustness of ECoSI compared to other state-of-the-art MARL algorithms.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sparse interaction in multiagent tasks is an important approach to reduce the exponential computational cost for multiagent reinforcement learning (MARL) systems. How to select proper equilibrium solutions is the key to find the optimal policy and to improve the learning performance when collisions occur. We propose a new MARL algorithm, Efficient Coordination based MARL with Sparse Interactions (ECoSI), using the sparse interaction framework and an efficient coordination mechanism, where equilibrium solutions are selected via Nash equilibrium and Chicken game. ECoSI not only separates the Q-value updating rule in joint states from non-joint states with sparse interactions to achieve lower computation and storage complexity, but also takes advantage of efficient coordination with equilibrium solutions to find the optimal policy. Experimental results demonstrate the effectiveness and robustness of ECoSI compared to other state-of-the-art MARL algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小鸡博弈的多智能体协同强化学习方法
多智能体任务中的稀疏交互是降低多智能体强化学习(MARL)系统指数计算成本的重要途径。如何选择合适的平衡解是在发生碰撞时找到最优策略和提高学习性能的关键。本文提出了一种新的MARL算法——基于稀疏交互的高效协调(Efficient Coordination based MARL with Sparse Interactions, ECoSI),该算法利用稀疏交互框架和高效协调机制,通过纳什均衡和Chicken game选择均衡解。ECoSI不仅将联合状态下的q值更新规则从相互作用稀疏的非联合状态中分离出来,降低了计算和存储复杂度,而且利用与平衡解的有效协调来寻找最优策略。实验结果证明了ECoSI与其他先进的MARL算法相比的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1