The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation)

J. Rech, N. Bauer, David Dirkes, J. Kaplan, Huotain Zhang, Zhengxing Peng, L. Ye, Shubin Liu, H. Ade, F. Gao, W. You
{"title":"The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation)","authors":"J. Rech, N. Bauer, David Dirkes, J. Kaplan, Huotain Zhang, Zhengxing Peng, L. Ye, Shubin Liu, H. Ade, F. Gao, W. You","doi":"10.1117/12.2529500","DOIUrl":null,"url":null,"abstract":"Newly developed fused-ring electron acceptors (FREAs) have proven to be an effective class of materials for extending the absorption window and boosting the efficiency of organic photovoltaics (OPVs). While numerous FREA small molecules have been developed, there is surprisingly little structural diversity among high performance FREAs in literature. For example, of the high efficiency electron acceptors reported, the vast majority utilize derivatives of 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (INCN) as the acceptor moiety. It has been postulated that the high electron mobility exhibited by FREA molecules with INCN end groups is a result of close π-π stacking between the neighboring planar INCN groups, forming an effective charge transport pathway between molecules. To explore this as a design rationale for electron acceptors, we synthesized a new fused-ring electron acceptor, IDTCF, which has methyl substituents out of plane to the conjugated acceptor backbone. These methyl groups hinder packing and expand the π-π stacking distance by ~ 1 A, but this change doesn’t affect the optical or electrochemical properties of the individual acceptor molecule. Overall, our results show that intermolecular interactions (especially π-π stacking between end groups) play a crucial role in performance of FREAs. We demonstrated that the planarity of the acceptor unit is of paramount importance as even minor deviations in end group distance are enough to disrupt crystallinity and cripple device performance.","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2529500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Newly developed fused-ring electron acceptors (FREAs) have proven to be an effective class of materials for extending the absorption window and boosting the efficiency of organic photovoltaics (OPVs). While numerous FREA small molecules have been developed, there is surprisingly little structural diversity among high performance FREAs in literature. For example, of the high efficiency electron acceptors reported, the vast majority utilize derivatives of 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (INCN) as the acceptor moiety. It has been postulated that the high electron mobility exhibited by FREA molecules with INCN end groups is a result of close π-π stacking between the neighboring planar INCN groups, forming an effective charge transport pathway between molecules. To explore this as a design rationale for electron acceptors, we synthesized a new fused-ring electron acceptor, IDTCF, which has methyl substituents out of plane to the conjugated acceptor backbone. These methyl groups hinder packing and expand the π-π stacking distance by ~ 1 A, but this change doesn’t affect the optical or electrochemical properties of the individual acceptor molecule. Overall, our results show that intermolecular interactions (especially π-π stacking between end groups) play a crucial role in performance of FREAs. We demonstrated that the planarity of the acceptor unit is of paramount importance as even minor deviations in end group distance are enough to disrupt crystallinity and cripple device performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机太阳能电池中融合环电子受体端基平面度的关键作用(会议报告)
新开发的熔环电子受体(FREAs)已被证明是一类有效的材料,可以延长吸收窗口和提高有机光伏(opv)的效率。虽然已经开发了许多FREA小分子,但在文献中,高性能FREA的结构多样性却很少。例如,在报道的高效电子受体中,绝大多数是利用2-(3-氧-2,3-二氢茚-1-乙基)丙二腈(INCN)衍生物作为受体部分。假设具有INCN端基的FREA分子表现出的高电子迁移率是相邻平面INCN基团之间紧密π-π堆积的结果,形成了分子间有效的电荷传输途径。为了探索这作为电子受体的设计原理,我们合成了一种新的融合环电子受体IDTCF,它的甲基取代基与共轭受体主链平面外。这些甲基阻碍了填充并使π-π堆积距离扩大了~ 1a,但这种变化并不影响单个受体分子的光学或电化学性质。总的来说,我们的研究结果表明分子间相互作用(特别是端基之间的π-π堆叠)在FREAs的性能中起着至关重要的作用。我们证明了受体单元的平面性是至关重要的,因为即使端基距离的微小偏差也足以破坏结晶度并削弱器件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11094 The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation) Phase segregation control in mixed halide and mixed cation perovskite films: Synergistic effects of Cs and Rb (Conference Presentation) Aqueous processing of Ag-nanowire electrodes on top of semi-transparent perovskite solar cells (Conference Presentation) Investigations on band structure engineering in organic semiconductors (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1