Aqueous processing of Ag-nanowire electrodes on top of semi-transparent perovskite solar cells (Conference Presentation)

T. Gahlmann, K. Brinkmann, C. Tückmantel, T. Becker, Junjie He, Johannes Bahr, C. Kreusel, T. Riedl
{"title":"Aqueous processing of Ag-nanowire electrodes on top of semi-transparent perovskite solar cells (Conference Presentation)","authors":"T. Gahlmann, K. Brinkmann, C. Tückmantel, T. Becker, Junjie He, Johannes Bahr, C. Kreusel, T. Riedl","doi":"10.1117/12.2529331","DOIUrl":null,"url":null,"abstract":"Aqueous dispersions of silver nanowires state an environmentally friendly avenue for highly conductive, yet transparent top electrodes for semi-transparent perovskite solar cells. However, for the well-known chemical instability of halide perovskites upon exposure to water, there are no reports of successful aqueous processing on top of perovskite devices. Here, we show that electron extraction layers of AZO/SnOx [1,2], with the SnOx grown by low temperature atomic layer deposition, provide outstanding protection layers, which even afford the spray coating of AgNW electrodes (sheet resistance Rsh =15 Ohm/sq and a transmittance of 90%) from water-based dispersions without damage to the perovskite.\nThe layer sequence of the inverted cells is ITO/PTAA/perovskite/PCBM/AZO/SnOx/top-electrode. In devices without the ALD SnOx, aqueous spray processing decomposes the perovskite layers. Interestingly, the direct interface of Ag-NW/SnOx comprises a Schottky barrier, with characteristics strongly dependent on the charge carrier density of the SnOx. For a carrier density below 10^18 cm^-3, S-shaped J-V characteristics are found, that successively vanish upon UV-light soaking. For our low-T SnOx with 10^16 cm^-3, the insertion of a thin interfacial layer with a high charge carrier density (10^20 cm^-3), e.g. 10nm of ITO, is found to afford high performance semitransparent PSCs with an efficiency of 15%. Most importantly, compared to ITO electrodes Ag-NW based electrodes provide a key to achieve a higher transmittance in the IR, which is desirable for tandem Si/PSCs. \n[1] K. Brinkmann et al., Nat. Commun. 8, 13938 (2017).\n[2] L. Hoffmann et al. ACS Applied Mater. & Interfaces 10, 6006 (2018).","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2529331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous dispersions of silver nanowires state an environmentally friendly avenue for highly conductive, yet transparent top electrodes for semi-transparent perovskite solar cells. However, for the well-known chemical instability of halide perovskites upon exposure to water, there are no reports of successful aqueous processing on top of perovskite devices. Here, we show that electron extraction layers of AZO/SnOx [1,2], with the SnOx grown by low temperature atomic layer deposition, provide outstanding protection layers, which even afford the spray coating of AgNW electrodes (sheet resistance Rsh =15 Ohm/sq and a transmittance of 90%) from water-based dispersions without damage to the perovskite. The layer sequence of the inverted cells is ITO/PTAA/perovskite/PCBM/AZO/SnOx/top-electrode. In devices without the ALD SnOx, aqueous spray processing decomposes the perovskite layers. Interestingly, the direct interface of Ag-NW/SnOx comprises a Schottky barrier, with characteristics strongly dependent on the charge carrier density of the SnOx. For a carrier density below 10^18 cm^-3, S-shaped J-V characteristics are found, that successively vanish upon UV-light soaking. For our low-T SnOx with 10^16 cm^-3, the insertion of a thin interfacial layer with a high charge carrier density (10^20 cm^-3), e.g. 10nm of ITO, is found to afford high performance semitransparent PSCs with an efficiency of 15%. Most importantly, compared to ITO electrodes Ag-NW based electrodes provide a key to achieve a higher transmittance in the IR, which is desirable for tandem Si/PSCs. [1] K. Brinkmann et al., Nat. Commun. 8, 13938 (2017). [2] L. Hoffmann et al. ACS Applied Mater. & Interfaces 10, 6006 (2018).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半透明钙钛矿太阳能电池顶部银纳米线电极的水处理(会议报告)
银纳米线的水分散体为半透明钙钛矿太阳能电池的高导电性、透明顶电极提供了一条环保的途径。然而,众所周知,卤化物钙钛矿在暴露于水时具有化学不稳定性,目前还没有在钙钛矿装置上成功进行水处理的报道。在这里,我们证明了AZO/SnOx的电子萃取层[1,2],通过低温原子层沉积生长的SnOx,提供了出色的保护层,甚至可以在水基分散体中喷涂AgNW电极(片电阻Rsh =15欧姆/平方,透射率为90%),而不会损坏钙钛矿。倒置电池层序为ITO/PTAA/钙钛矿/PCBM/AZO/SnOx/顶电极。在没有ALD SnOx的设备中,水喷雾处理会分解钙钛矿层。有趣的是,Ag-NW/SnOx的直接界面包括一个肖特基势垒,其特性强烈依赖于SnOx的载流子密度。当载流子密度小于10^18 cm^-3时,发现s形J-V特性,在紫外线照射下逐渐消失。对于我们的10^16 cm^-3的低t SnOx,发现插入具有高载流子密度(10^20 cm^-3)的薄界面层,例如10nm的ITO,可以提供具有15%效率的高性能半透明psc。最重要的是,与ITO电极相比,Ag-NW电极提供了在IR中实现更高透射率的关键,这对于串联Si/ psc是理想的。[1]王晓明,王晓明,王晓明,等。中国生物医学工程学报,2017,32 (2).[2]L. Hoffmann等。ACS应用材料。与接口10,6006(2018)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11094 The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation) Phase segregation control in mixed halide and mixed cation perovskite films: Synergistic effects of Cs and Rb (Conference Presentation) Aqueous processing of Ag-nanowire electrodes on top of semi-transparent perovskite solar cells (Conference Presentation) Investigations on band structure engineering in organic semiconductors (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1