首页 > 最新文献

Organic, Hybrid, and Perovskite Photovoltaics XX最新文献

英文 中文
Front Matter: Volume 11094 封面:第11094卷
Pub Date : 2019-10-16 DOI: 10.1117/12.2551452
{"title":"Front Matter: Volume 11094","authors":"","doi":"10.1117/12.2551452","DOIUrl":"https://doi.org/10.1117/12.2551452","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114722401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature of photogenerated defects in bulk heterojunction OPVs (Conference Presentation) 体异质结opv中光生缺陷的性质(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2530225
J. Shinar, Joshua Wolanyk, Raghunandan B. Iyer, R. Shinar
{"title":"Nature of photogenerated defects in bulk heterojunction OPVs (Conference Presentation)","authors":"J. Shinar, Joshua Wolanyk, Raghunandan B. Iyer, R. Shinar","doi":"10.1117/12.2530225","DOIUrl":"https://doi.org/10.1117/12.2530225","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"158 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125779403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High exciton diffusion coefficients in fused ring electron acceptor films (Conference Presentation) 高激子扩散系数的环形电子受体膜(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2538441
J. Hodgkiss
{"title":"High exciton diffusion coefficients in fused ring electron acceptor films (Conference Presentation)","authors":"J. Hodgkiss","doi":"10.1117/12.2538441","DOIUrl":"https://doi.org/10.1117/12.2538441","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129498761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequential deposition of organic films with eco-compatible solvents enables high-efficiency nonfullerene solar cells (Conference Presentation) 有机薄膜与生态相容溶剂的连续沉积使高效非富勒烯太阳能电池成为可能(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2529802
L. Ye, Yuan Xiong, Zheng Chen, Qianqian Zhang, Reece Henry, B. O’Connor, W. You, H. Ade
{"title":"Sequential deposition of organic films with eco-compatible solvents enables high-efficiency nonfullerene solar cells (Conference Presentation)","authors":"L. Ye, Yuan Xiong, Zheng Chen, Qianqian Zhang, Reece Henry, B. O’Connor, W. You, H. Ade","doi":"10.1117/12.2529802","DOIUrl":"https://doi.org/10.1117/12.2529802","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123664093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule (Conference Presentation) 双功能共轭有机分子改善可打印钙钛矿太阳能电池性能(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2524935
Zhihui Zhang, Yue Hu, Yaoguang Rong, Anyi Mei, Hongwei Han
{"title":"Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule (Conference Presentation)","authors":"Zhihui Zhang, Yue Hu, Yaoguang Rong, Anyi Mei, Hongwei Han","doi":"10.1117/12.2524935","DOIUrl":"https://doi.org/10.1117/12.2524935","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128339531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-thin organic solar cells for self-powered wearable electronics (Conference Presentation) 用于自供电可穿戴电子产品的超薄有机太阳能电池(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2531895
K. Fukuda, T. Someya
{"title":"Ultra-thin organic solar cells for self-powered wearable electronics (Conference Presentation)","authors":"K. Fukuda, T. Someya","doi":"10.1117/12.2531895","DOIUrl":"https://doi.org/10.1117/12.2531895","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130008877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase segregation control in mixed halide and mixed cation perovskite films: Synergistic effects of Cs and Rb (Conference Presentation) 混合卤化物和混合阳离子钙钛矿薄膜中的相偏析控制:Cs和Rb的协同效应(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2529560
Hoang X. Dang, Kai Wang, Masoud Ghasemi, M. De Bastiani, Detlef-Matthias Smilgies, S. De Wolf, A. Amassian
Mixed halide, mixed cation lead perovskite films have been demonstrated to benefit tremendously from the addition of Cs and Rb into the perovskite formulation, resulting in high performance, enhanced reproducibility and stability. However, the root cause of these effects in these complicated systems is not well understood. We address the above challenge by tracking in situ the solidification of perovskite precursors during solution-casting using time-resolved grazing incidence wide-angle X-ray scattering (GIWAXS). In doing so, we can directly link the formation or suppression of different crystalline phases to the presence of Cs and/or Rb. In the absence of these elements, the multi-component perovskite film is inherently unstable, phase segregating into a solvated MAI-rich phase and a FABr-rich phase. Adding even one of the two (Cs or Rb) is shown to alter the solidification quite dramatically, promoting different solidification pathways. Importantly, the addition of both components in the optimal ratio can drastically suppress phase segregation and promotes the spontaneous formation of the desired perovskite phase. This result is also confirmed by elemental mapping of organic cations (FA+, MA+) and halide anions (I-, Br-) via time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Perovskite precursors with an optimal combination of additives (7% Cs, 3% Rb) result in solar cells with 20.1% power conversion efficiency (PCE), outperforming formulation excluding Cs and Rb (PCE=14.6%). We propose that the synergistic effect is due to the collective benefits of Cs and Rb on the formation kinetics of the perovskite phase, and on the halides redistribution throughout the film. Importantly, our study points to new design rules for tuning the crystallization pathway of multi-component hybrid perovskites.
混合卤化物、混合阳离子、混合铅钙钛矿薄膜已被证明在钙钛矿配方中添加Cs和Rb会极大地受益,从而获得高性能、增强的再现性和稳定性。然而,在这些复杂的系统中产生这些影响的根本原因尚不清楚。我们通过使用时间分辨掠入射广角x射线散射(GIWAXS)原位跟踪钙钛矿前驱体在溶液铸造过程中的凝固来解决上述挑战。这样,我们可以直接将不同晶相的形成或抑制与Cs和/或Rb的存在联系起来。在缺乏这些元素的情况下,多组分钙钛矿膜本质上是不稳定的,相分离为溶剂化的富mai相和富f - f相。结果表明,即使添加两者中的一种(Cs或Rb)也会显著改变凝固,促进不同的凝固途径。重要的是,以最佳比例添加这两种成分可以显著抑制相偏析,促进所需钙钛矿相的自发形成。通过飞行时间二次离子质谱(ToF-SIMS)对有机阳离子(FA+, MA+)和卤化物阴离子(I-, Br-)的元素映射也证实了这一结果。钙钛矿前驱体的最佳添加剂组合(7% Cs, 3% Rb)使太阳能电池的功率转换效率(PCE)达到20.1%,优于不含Cs和Rb的配方(PCE=14.6%)。我们认为这种协同效应是由于Cs和Rb对钙钛矿相的形成动力学和卤化物在整个薄膜中的再分配的共同利益。重要的是,我们的研究指出了调整多组分杂化钙钛矿结晶路径的新设计规则。
{"title":"Phase segregation control in mixed halide and mixed cation perovskite films: Synergistic effects of Cs and Rb (Conference Presentation)","authors":"Hoang X. Dang, Kai Wang, Masoud Ghasemi, M. De Bastiani, Detlef-Matthias Smilgies, S. De Wolf, A. Amassian","doi":"10.1117/12.2529560","DOIUrl":"https://doi.org/10.1117/12.2529560","url":null,"abstract":"Mixed halide, mixed cation lead perovskite films have been demonstrated to benefit tremendously from the addition of Cs and Rb into the perovskite formulation, resulting in high performance, enhanced reproducibility and stability. However, the root cause of these effects in these complicated systems is not well understood. We address the above challenge by tracking in situ the solidification of perovskite precursors during solution-casting using time-resolved grazing incidence wide-angle X-ray scattering (GIWAXS). In doing so, we can directly link the formation or suppression of different crystalline phases to the presence of Cs and/or Rb. In the absence of these elements, the multi-component perovskite film is inherently unstable, phase segregating into a solvated MAI-rich phase and a FABr-rich phase. Adding even one of the two (Cs or Rb) is shown to alter the solidification quite dramatically, promoting different solidification pathways. Importantly, the addition of both components in the optimal ratio can drastically suppress phase segregation and promotes the spontaneous formation of the desired perovskite phase. This result is also confirmed by elemental mapping of organic cations (FA+, MA+) and halide anions (I-, Br-) via time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Perovskite precursors with an optimal combination of additives (7% Cs, 3% Rb) result in solar cells with 20.1% power conversion efficiency (PCE), outperforming formulation excluding Cs and Rb (PCE=14.6%). We propose that the synergistic effect is due to the collective benefits of Cs and Rb on the formation kinetics of the perovskite phase, and on the halides redistribution throughout the film. Importantly, our study points to new design rules for tuning the crystallization pathway of multi-component hybrid perovskites.","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115576856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer and hybrid solar cells: The crucial role of interfaces (Conference Presentation) 聚合物和混合太阳能电池:界面的关键作用(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2530651
T. Marks
The performance of molecular/macromolecular and hybrid solar cells depends on understanding and controlling the interfaces between the component materials. Molecularly tailoring interfaces offers an effective and informative means to selectively modulate charge transport, molecular self-assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can act as filters to facilitate extraction of “correct charges” while blocking extraction of “incorrect charges” at electrode-active layer and active layer-active layer interfaces in almost all types of solar cells. Such interface engineering can also suppress carrier-trapping defects at interfaces and stabilize such interfaces against de-cohesion and the ingress of oxidants. For soft matter-soft matter interfaces, interfacial tailoring also enhances charge separation and photocurrent generation. In this lecture, challenges and opportunities in controlling the structures of solar cell interfaces are illustrated in the following areas:1) modulating charge transport by active layer molecular/microstructural organization,[1],[2] 2) controlling exciton splitting and carrier generation at active layer donor-acceptor interfaces,[3],[4] 3) tuning donor-acceptor combinations for maximum performance,[5],[6] 4) modulating charge transport across electrode-soft matter interfaces in polymer and perovskite cells.[7] Rational interface engineering along with improved donor and acceptor structures, guided by theoretical/computational analysis, affords large fill factors, efficiencies greater than 14%, and enhanced cell durability. All this must of course be accomplished using environmentally benign synthetic processes.[8]REFERENCES[1] Manley, E.F.; Strzalka, J.; Fauvell, T.J.; Jackson, N.E.; Marks, T.J.; Chen, L.X. Advan. Mater. 2018, 30, 1703933.[2] Manley, E.F.; Harschneck, T.; Eastham, N.D.; Leonardi, M.J.; Zhou, N.; Chang, R.P.H.; Chen, L.X.; Marks, T.J. Advan. Energy Mater. 2019, 1800611.[3] Eastham, N.D.; Dudnik, A.S.; Aldrich, T.J.; Manley, E.F.; Fauvell, T.J.; Hartnett, P.E.; Wasielewski, M.R.; Chen, L.X.; Facchetti, A.F.; Chang, R.P.H.; Marks, T.J. Chem. Mater. 2017, 29, 4432–4444.[4] Wang, G.; Eastham, N.D.; Aldrich, T.J.; Ma, B.; Manley, E.F.; Chen, Z.; Chen, L.X.; Olvera de la Cruz, M.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Advan. Energy Mater. 2018, 8, 1702173.[5] Eastham, N.D.; Logsdon, J.L.; Manley, E.F.; Aldrich, T.J.; Leonardi, M.J.; Wang, G.; Powers-Riggs, N.E.; Young, R.M.; Chen, L.X.; Wasielewski, M.R.; Melkonyan, F.S.; Chang, R.P.H.; Marks, T.J. Advan. Mater. 2018, 30,1704263. .[6] Fallon, K.J.; Santala, A.; Wijeyasinghe, N.; Manley, E.F.; Goodeal, N.; Leventis, A.; Freeman, D.M.E.; Al-Hashimi, M.; Chen, L.X.; Marks, T.J.; Anthopoulos, T.D.; Bronstein, H. Advan. Funct. Mater. 2017, 27, 1704069.[7] Liao, H.-C.; Tam, T.L.D; Guo, P.; Wu, Y.; Manley, E.; Huang, W.; Seo, C. M.; Wasielewski, M.R.; Kanatzidis, M.G.; Chen, L.C.; Facchetti, A.; Cha
分子/大分子和混合太阳能电池的性能取决于对组件材料之间界面的理解和控制。分子裁剪界面提供了一种有效的、信息丰富的方法来选择性地调节硬物质-软物质和软物质界面上的电荷输运、分子自组装和激子动力学。在几乎所有类型的太阳能电池中,这种界面可以起到过滤器的作用,促进“正确电荷”的提取,同时阻止“错误电荷”在电极-活性层和有源层-有源层界面的提取。这种界面工程还可以抑制界面上的载流子捕获缺陷,并稳定界面,防止脱聚和氧化剂的进入。对于软物质-软物质界面,界面裁剪也增强了电荷分离和光电流的产生。在这节课中,控制太阳能电池界面结构的挑战和机遇体现在以下几个方面:1)通过活性层分子/微观结构组织调节电荷传输,[1],[2]2)控制活性层供体-受体界面的激子分裂和载流子产生,[3],[4]3)调节供体-受体组合以获得最大性能,[5],[6]4)调节聚合物和钙钛矿电池中电极-软物质界面的电荷传输[7]。合理的界面工程以及改进的供体和受体结构,在理论/计算分析的指导下,提供了大的填充系数,效率大于14%,并增强了细胞的耐久性。当然,所有这些都必须使用无害环境的合成工艺来完成。[8]李晓明,李晓明。Strzalka, j .;Fauvell T.J.;杰克逊,N.E.;标志,T.J.;陈立新。材料,2018,30,1703933.[2]Manley E.F.;Harschneck t;菲尔特Eastham;Leonardi M.J.;周:;Chang R.P.H.;陈,L.X.;马克斯,T.J.阿德万。能源工程学报,2017,18 (3):481 - 481 .[3]菲尔特Eastham;Dudnik响亮;奥尔德里奇,T.J.;Manley E.F.;Fauvell T.J.;Hartnett体育;Wasielewski,核磁共振;陈,L.X.;法切蒂,自动跟踪;Chang R.P.H.;马克斯,T.J.化学。材料学报,2017,29,4432-4444 .[4]王,g;菲尔特Eastham;奥尔德里奇,T.J.;马,b;Manley E.F.;陈,z;陈,L.X.;奥尔维拉·德拉·克鲁兹,m.s;Chang R.P.H.;法切蒂,a;马克斯,T.J.阿德万。能源工程学报,2018,8 (5):557 - 557 .[5]菲尔特Eastham;洛格斯登,评论;Manley E.F.;奥尔德里奇,T.J.;Leonardi M.J.;王,g;Powers-Riggs N.E.;年轻、智慧化;陈,L.X.;Wasielewski,核磁共振;Melkonyan F.S.;Chang R.P.H.;马克斯,T.J.阿德万。[6]张建军,张建军,张建军,等。Santala, a;Wijeyasinghe:;Manley E.F.;Goodeal:;Leventis, a;弗里曼,D.M.E.;哈,m;陈,L.X.;标志,T.J.;Anthopoulos杰;布朗斯坦,H.阿德万。功能。材料,2017,27,1704069.[7]廖、H.-C;Tam T.L.D;郭,p;吴,y;Manley大肠;黄,w;徐,c.m.;Wasielewski,核磁共振;Kanatzidis M.G.;陈,开出信用证;法切蒂,a;Chang R.P.H.;马克斯,T.J.阿德万。能源工程学报,2016,37 (8):663 - 667 .[8]奥尔德里奇,T.J.;马特,m;朱,w;Swick克里;斯特恩,c;宝贝儿,G.C.;法切蒂,a;Melkonyan F.S.;马克斯,T.J.;化学。Soc. 2019即将出版。DOI: 10.1021 / jacs.8b13653。
{"title":"Polymer and hybrid solar cells: The crucial role of interfaces (Conference Presentation)","authors":"T. Marks","doi":"10.1117/12.2530651","DOIUrl":"https://doi.org/10.1117/12.2530651","url":null,"abstract":"The performance of molecular/macromolecular and hybrid solar cells depends on understanding and controlling the interfaces between the component materials. Molecularly tailoring interfaces offers an effective and informative means to selectively modulate charge transport, molecular self-assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can act as filters to facilitate extraction of “correct charges” while blocking extraction of “incorrect charges” at electrode-active layer and active layer-active layer interfaces in almost all types of solar cells. Such interface engineering can also suppress carrier-trapping defects at interfaces and stabilize such interfaces against de-cohesion and the ingress of oxidants. For soft matter-soft matter interfaces, interfacial tailoring also enhances charge separation and photocurrent generation. In this lecture, challenges and opportunities in controlling the structures of solar cell interfaces are illustrated in the following areas:1) modulating charge transport by active layer molecular/microstructural organization,[1],[2] 2) controlling exciton splitting and carrier generation at active layer donor-acceptor interfaces,[3],[4] 3) tuning donor-acceptor combinations for maximum performance,[5],[6] 4) modulating charge transport across electrode-soft matter interfaces in polymer and perovskite cells.[7] Rational interface engineering along with improved donor and acceptor structures, guided by theoretical/computational analysis, affords large fill factors, efficiencies greater than 14%, and enhanced cell durability. All this must of course be accomplished using environmentally benign synthetic processes.[8]\u0000\u0000REFERENCES\u0000[1] Manley, E.F.; Strzalka, J.; Fauvell, T.J.; Jackson, N.E.; Marks, T.J.; Chen, L.X. Advan. Mater. 2018, 30, 1703933.\u0000[2] Manley, E.F.; Harschneck, T.; Eastham, N.D.; Leonardi, M.J.; Zhou, N.; Chang, R.P.H.; Chen, L.X.; Marks, T.J. Advan. Energy Mater. 2019, 1800611.\u0000[3] Eastham, N.D.; Dudnik, A.S.; Aldrich, T.J.; Manley, E.F.; Fauvell, T.J.; Hartnett, P.E.; Wasielewski, M.R.; Chen, L.X.; Facchetti, A.F.; Chang, R.P.H.; Marks, T.J. Chem. Mater. 2017, 29, 4432–4444.\u0000[4] Wang, G.; Eastham, N.D.; Aldrich, T.J.; Ma, B.; Manley, E.F.; Chen, Z.; Chen, L.X.; Olvera de la Cruz, M.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Advan. Energy Mater. 2018, 8, 1702173.\u0000[5] Eastham, N.D.; Logsdon, J.L.; Manley, E.F.; Aldrich, T.J.; Leonardi, M.J.; Wang, G.; Powers-Riggs, N.E.; Young, R.M.; Chen, L.X.; Wasielewski, M.R.; Melkonyan, F.S.; Chang, R.P.H.; Marks, T.J. Advan. Mater. 2018, 30,1704263. .\u0000[6] Fallon, K.J.; Santala, A.; Wijeyasinghe, N.; Manley, E.F.; Goodeal, N.; Leventis, A.; Freeman, D.M.E.; Al-Hashimi, M.; Chen, L.X.; Marks, T.J.; Anthopoulos, T.D.; Bronstein, H. Advan. Funct. Mater. 2017, 27, 1704069.\u0000[7] Liao, H.-C.; Tam, T.L.D; Guo, P.; Wu, Y.; Manley, E.; Huang, W.; Seo, C. M.; Wasielewski, M.R.; Kanatzidis, M.G.; Chen, L.C.; Facchetti, A.; Cha","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123601841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on band structure engineering in organic semiconductors (Conference Presentation) 有机半导体带结构工程研究(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2529289
K. Ortstein, M. Schwarze, H. Kleemann, Sebastian Hutsch, Sebastian Schellhammer, F. Talnack, M. Hambsch, F. Ortmann, S. Mannsfeld, K. Leo
{"title":"Investigations on band structure engineering in organic semiconductors (Conference Presentation)","authors":"K. Ortstein, M. Schwarze, H. Kleemann, Sebastian Hutsch, Sebastian Schellhammer, F. Talnack, M. Hambsch, F. Ortmann, S. Mannsfeld, K. Leo","doi":"10.1117/12.2529289","DOIUrl":"https://doi.org/10.1117/12.2529289","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"65 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116580184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of triplet exciton diffusion on the open-circuit voltage generation in singlet fission photovoltaics (Conference Presentation) 单线态裂变光伏中三重态激子扩散对开路电压产生的影响(会议报告)
Pub Date : 2019-09-10 DOI: 10.1117/12.2529879
Ajay K. Pandey
{"title":"Effect of triplet exciton diffusion on the open-circuit voltage generation in singlet fission photovoltaics (Conference Presentation)","authors":"Ajay K. Pandey","doi":"10.1117/12.2529879","DOIUrl":"https://doi.org/10.1117/12.2529879","url":null,"abstract":"","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116835521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Organic, Hybrid, and Perovskite Photovoltaics XX
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1