Extended Fabrication-Aware Convolution Learning Framework for Predicting 3D Shape Deformation in Additive Manufacturing

Yuanxiang Wang, Cesar Ruiz, Qiang Huang
{"title":"Extended Fabrication-Aware Convolution Learning Framework for Predicting 3D Shape Deformation in Additive Manufacturing","authors":"Yuanxiang Wang, Cesar Ruiz, Qiang Huang","doi":"10.1109/CASE49439.2021.9551545","DOIUrl":null,"url":null,"abstract":"Geometric accuracy control is critical for precision additive manufacturing (AM). To learn and predict the shape deformation from a limited number of training products, a fabrication-aware convolution learning framework has been developed in our previous work to describe the layer-by-layer fabrication process. This work extends the convolution learning framework to broader categories of 3D geometries by constructively incorporating spherical and polyhedral shapes into a unified model. It is achieved by extending 2D cookie-cutter modeling approach to 3D case and by modeling spatial correlations. Methodologies demonstrated with real case studies show the promise of prescriptive modeling and control of complicated shape quality in AM.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Geometric accuracy control is critical for precision additive manufacturing (AM). To learn and predict the shape deformation from a limited number of training products, a fabrication-aware convolution learning framework has been developed in our previous work to describe the layer-by-layer fabrication process. This work extends the convolution learning framework to broader categories of 3D geometries by constructively incorporating spherical and polyhedral shapes into a unified model. It is achieved by extending 2D cookie-cutter modeling approach to 3D case and by modeling spatial correlations. Methodologies demonstrated with real case studies show the promise of prescriptive modeling and control of complicated shape quality in AM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造中三维形状变形预测的扩展制造感知卷积学习框架
几何精度控制是精密增材制造的关键。为了从有限数量的训练产品中学习和预测形状变形,我们在之前的工作中开发了一个制造感知卷积学习框架来描述逐层制造过程。这项工作通过建设性地将球形和多面体形状合并到一个统一的模型中,将卷积学习框架扩展到更广泛的3D几何类别。它是通过将二维千篇式建模方法扩展到三维情况和空间相关性建模来实现的。通过实际案例研究证明了在增材制造中规范建模和复杂形状质量控制的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1