Application Of Data Mining Using The Naïve Bayes Classification Method To Predict Public Interest Participation In The 2024 Elections

Marcelina Novi Zarti, Eka Sahputra, Anisya Sonita, Yovi Apridiansyah
{"title":"Application Of Data Mining Using The Naïve Bayes Classification Method To Predict Public Interest Participation In The 2024 Elections","authors":"Marcelina Novi Zarti, Eka Sahputra, Anisya Sonita, Yovi Apridiansyah","doi":"10.53697/jkomitek.v3i1.1192","DOIUrl":null,"url":null,"abstract":"A big data processing process using a Data Mining technique that will be used in a study in the Application of Data Mining Using the Naïve Bayes classification to predict the participation of the Public Interest in the 2024 election. The data was obtained from the General Election Commission (KPU). The data was tested using the Naïve Bayes classification method with Weka Tools and 7 predetermined attributes. The dataset was taken as much as 96.67% of 11,406 training data, namely 2014 election data and 99.90% of 11,908 testing data, namely 2020 election data. Results It is known that the number of participants in Central Bengkulu Regency for the 2024 election based on participant data in 2020 and the 2014 election results is likely to increase by up to 3.23%, from 96.67% per 11,406 participants to 99.90% per 11,908 participants and the results predictions are likely to increase.","PeriodicalId":371693,"journal":{"name":"Jurnal Komputer, Informasi dan Teknologi (JKOMITEK)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputer, Informasi dan Teknologi (JKOMITEK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53697/jkomitek.v3i1.1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A big data processing process using a Data Mining technique that will be used in a study in the Application of Data Mining Using the Naïve Bayes classification to predict the participation of the Public Interest in the 2024 election. The data was obtained from the General Election Commission (KPU). The data was tested using the Naïve Bayes classification method with Weka Tools and 7 predetermined attributes. The dataset was taken as much as 96.67% of 11,406 training data, namely 2014 election data and 99.90% of 11,908 testing data, namely 2020 election data. Results It is known that the number of participants in Central Bengkulu Regency for the 2024 election based on participant data in 2020 and the 2014 election results is likely to increase by up to 3.23%, from 96.67% per 11,406 participants to 99.90% per 11,908 participants and the results predictions are likely to increase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Naïve贝叶斯分类方法的数据挖掘在2024年美国大选公众利益参与预测中的应用
使用数据挖掘技术的大数据处理过程,将在数据挖掘应用的研究中使用Naïve贝叶斯分类来预测公共利益在2024年选举中的参与。这些数据是从选举委员会获得的。使用Naïve贝叶斯分类方法与Weka工具和7个预定属性对数据进行测试。该数据集对11,406个训练数据(即2014年大选数据)和11,908个测试数据(即2020年大选数据)的采集率分别高达96.67%和99.90%。根据2020年的参与者数据和2014年的选举结果,中央明古鲁县2024年选举的参与者人数可能会增加3.23%,从每11,406名参与者的96.67%增加到每11,908名参与者的99.90%,结果预测可能会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information System Of Student Point Violations (Case Study Of Sma Muhammadiyah 7 Serbelawan) Hotspot Network Security System From Brute Force Attack Using Pfsense External Firewall (Case Study of Wifi-Ku.Net Hotspot) Application Of 3-Dimensional Modeling In Android-Based Adventure Game Applications Application Of Data Mining Using The Naïve Bayes Classification Method To Predict Public Interest Participation In The 2024 Elections Graduation Book Information System Of Muhammadyah University Of Bengkulu
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1