Data-Driven Smart Manufacturing Technologies for Prop Shop Systems

Zhicheng Xu, Weinan Gao, Zhicun Chen, Rami J. Haddad, Scot Hudson, Ezebuugo Nwaonumah, Frank Zahiri, Jeremy Johnson
{"title":"Data-Driven Smart Manufacturing Technologies for Prop Shop Systems","authors":"Zhicheng Xu, Weinan Gao, Zhicun Chen, Rami J. Haddad, Scot Hudson, Ezebuugo Nwaonumah, Frank Zahiri, Jeremy Johnson","doi":"10.1109/SERA57763.2023.10197769","DOIUrl":null,"url":null,"abstract":"In this paper, a data-driven framework was designed to predict manufacturing failure. The framework includes an autoregression model with the least mean square algorithm, a linear regression model with prediction intervals for short-term and long-term failure detection, and a feature extraction model with empirical mode decomposition. The analytical results validate that the designed data-driven model is a good candidate for failure predictions in smart manufacturing processes.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a data-driven framework was designed to predict manufacturing failure. The framework includes an autoregression model with the least mean square algorithm, a linear regression model with prediction intervals for short-term and long-term failure detection, and a feature extraction model with empirical mode decomposition. The analytical results validate that the designed data-driven model is a good candidate for failure predictions in smart manufacturing processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于道具商店系统的数据驱动智能制造技术
本文设计了一个数据驱动的制造故障预测框架。该框架包括基于最小均方算法的自回归模型、基于预测区间的短期和长期故障检测线性回归模型以及基于经验模态分解的特征提取模型。分析结果验证了所设计的数据驱动模型是智能制造过程中故障预测的良好候选模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Students’ Job Seeking Process Through A Digital Badging System Classification of Multilingual Medical Documents using Deep Learning Data-Driven Smart Manufacturing Technologies for Prop Shop Systems Identifying Code Tampering Using A Bytecode Comparison Analysis Tool Evaluating the Performance of Containerized Webservers against web servers on Virtual Machines using Bombardment and Siege
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1