D. Hu, H. Hashimoto, Li-Fong Tseng, Ken Chau-Cheung Cheng, Katherine Shu-Min Li, Sying-Jyan Wang, Sean Y.-S. Chen, Jwu E. Chen, Clark Liu, Andrew Yi-Ann Huang
{"title":"Innovative Practice on Wafer Test Innovations","authors":"D. Hu, H. Hashimoto, Li-Fong Tseng, Ken Chau-Cheung Cheng, Katherine Shu-Min Li, Sying-Jyan Wang, Sean Y.-S. Chen, Jwu E. Chen, Clark Liu, Andrew Yi-Ann Huang","doi":"10.1109/VTS48691.2020.9107619","DOIUrl":null,"url":null,"abstract":"Wafer test integrates innovative works from upstream, automatic test equipment (ATE); middle stream, 2.3D/2.5D; and downstream, statistical analysis of randomness on wafer pattern recognition. NXP Taiwan proposes an AI-driven yield prediction of ATE to reduce test cost during frequent modification and changes in test systems. SiPlus proposes competitive 2.3D and SiPlus eHDF to compare many metrics with 2.5D interposer technology. Powertech Technology Inc. focuses the statistical analysis of randomness on conventional spatial wafer defect patterns. This session addresses an integrated innovation along test systems in ATE in upstream, then 2.3D/SiPlus eHDF integration structure design, finally novel randomness effects on wafer defect diagnosis.","PeriodicalId":326132,"journal":{"name":"2020 IEEE 38th VLSI Test Symposium (VTS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 38th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS48691.2020.9107619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wafer test integrates innovative works from upstream, automatic test equipment (ATE); middle stream, 2.3D/2.5D; and downstream, statistical analysis of randomness on wafer pattern recognition. NXP Taiwan proposes an AI-driven yield prediction of ATE to reduce test cost during frequent modification and changes in test systems. SiPlus proposes competitive 2.3D and SiPlus eHDF to compare many metrics with 2.5D interposer technology. Powertech Technology Inc. focuses the statistical analysis of randomness on conventional spatial wafer defect patterns. This session addresses an integrated innovation along test systems in ATE in upstream, then 2.3D/SiPlus eHDF integration structure design, finally novel randomness effects on wafer defect diagnosis.