Differentially-Private Federated Learning with Long-Term Budget Constraints Using Online Lagrangian Descent

O. Odeyomi, G. Záruba
{"title":"Differentially-Private Federated Learning with Long-Term Budget Constraints Using Online Lagrangian Descent","authors":"O. Odeyomi, G. Záruba","doi":"10.1109/AIIoT52608.2021.9454170","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of time-varying data distribution in a fully decentralized federated learning setting with budget constraints. Most existing work cover only fixed data distribution in the centralized setting, which is not applicable when the data becomes time-varying, such as in realtime traffic monitoring. More so, a lot of existing work do not address budget constraint problem common in practical federated learning settings. To address these problems, we propose an online Lagrangian descent algorithm. To provide privacy to the local model updates of the clients, local differential privacy is introduced. We show that our algorithm incurs the best regret bound when compared to other similar algorithms, while satisfying the budget constraints in the long term.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses the problem of time-varying data distribution in a fully decentralized federated learning setting with budget constraints. Most existing work cover only fixed data distribution in the centralized setting, which is not applicable when the data becomes time-varying, such as in realtime traffic monitoring. More so, a lot of existing work do not address budget constraint problem common in practical federated learning settings. To address these problems, we propose an online Lagrangian descent algorithm. To provide privacy to the local model updates of the clients, local differential privacy is introduced. We show that our algorithm incurs the best regret bound when compared to other similar algorithms, while satisfying the budget constraints in the long term.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线拉格朗日下降的长期预算约束差分私有联邦学习
本文研究了具有预算约束的完全分散联邦学习环境下时变数据分布问题。现有的工作大多只涉及集中设置下的固定数据分布,当数据时变时,如实时交通监控,就不适用了。更重要的是,许多现有的工作没有解决实际联邦学习设置中常见的预算约束问题。为了解决这些问题,我们提出了一种在线拉格朗日下降算法。为了给客户端的本地模型更新提供隐私,引入了本地差分隐私。我们表明,与其他类似算法相比,我们的算法在满足长期预算约束的同时,产生了最佳的后悔界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-LPWAN: issues, solutions and research directions Automatic Detection of Vehicle Congestion by Using Roadside Unit Improved Noise Filtering Technique For Wake Detection In SAR Image Under Rough Sea Condition First Enriched Legal Database in Bangladesh with Efficient Search Optimization and Data Visualization for Law Students and Lawyers Differentially-Private Federated Learning with Long-Term Budget Constraints Using Online Lagrangian Descent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1