Structural estimation of discrete-choice games of incomplete information with multiple equilibria

Che-Lin Su, K. Judd
{"title":"Structural estimation of discrete-choice games of incomplete information with multiple equilibria","authors":"Che-Lin Su, K. Judd","doi":"10.1145/1807406.1807445","DOIUrl":null,"url":null,"abstract":"Estimation of games with multiple equilibria has received much attention in the recent econometrics literature. Unlike other estimation problems such as single-agent dynamic decision models or demand estimation, in which there is a unique solution in the underlying structural models, games usually admit multiple equilibria and the number of equilibria in a game can vary for different structural parameters. This fact makes the estimation of games far more challenging because the likelihood function or other criterion function defined in the space of structural parameters can be discontinuous or non-differentiable. Two-step estimators by Bajari et al. (2007) and Pesendorfer and Schmidt-Dengler (2008) and Nested Pusedo Likelihood (NPL) estimators by Aguirregabiria and Mira (2007) are proposed to address this problem. We recast the estimation problem as a constrained optimization problem with the Bayesian-Nash equilibrium condition being the constraints. The advantage of our formulation is that the likelihood function, now defined in the equilibrium probability space, is continuous and smooth. This allows researchers to use state-of-the-art optimization software to solve the estimation problem. In a Monte Carlo study, we compare the performance of a two-step estimator, NLP estimator, and our constrained optimization estimator.","PeriodicalId":142982,"journal":{"name":"Behavioral and Quantitative Game Theory","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Quantitative Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807406.1807445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Estimation of games with multiple equilibria has received much attention in the recent econometrics literature. Unlike other estimation problems such as single-agent dynamic decision models or demand estimation, in which there is a unique solution in the underlying structural models, games usually admit multiple equilibria and the number of equilibria in a game can vary for different structural parameters. This fact makes the estimation of games far more challenging because the likelihood function or other criterion function defined in the space of structural parameters can be discontinuous or non-differentiable. Two-step estimators by Bajari et al. (2007) and Pesendorfer and Schmidt-Dengler (2008) and Nested Pusedo Likelihood (NPL) estimators by Aguirregabiria and Mira (2007) are proposed to address this problem. We recast the estimation problem as a constrained optimization problem with the Bayesian-Nash equilibrium condition being the constraints. The advantage of our formulation is that the likelihood function, now defined in the equilibrium probability space, is continuous and smooth. This allows researchers to use state-of-the-art optimization software to solve the estimation problem. In a Monte Carlo study, we compare the performance of a two-step estimator, NLP estimator, and our constrained optimization estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有多均衡的不完全信息离散选择对策的结构估计
在最近的计量经济学文献中,多重均衡博弈的估计受到了广泛的关注。不像其他估计问题,如单智能体动态决策模型或需求估计,在潜在的结构模型中有一个唯一的解决方案,博弈通常允许多个均衡,博弈中均衡的数量可以因不同的结构参数而变化。这一事实使得游戏的估计更具挑战性,因为在结构参数空间中定义的可能性函数或其他标准函数可能是不连续的或不可微的。提出了Bajari等人(2007)和Pesendorfer和Schmidt-Dengler(2008)的两步估计器以及Aguirregabiria和Mira(2007)的嵌套Pusedo似然(NPL)估计器来解决这个问题。我们以贝叶斯-纳什均衡条件为约束条件,将估计问题转化为约束优化问题。我们的公式的优点是,现在在均衡概率空间中定义的似然函数是连续的和光滑的。这使得研究人员可以使用最先进的优化软件来解决估计问题。在蒙特卡罗研究中,我们比较了两步估计器、NLP估计器和我们的约束优化估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game theory and operations management Cost sharing in distribution problems for franchise operations Subgame-perfection in positive recursive games Rationalizability, adaptive dynamics, and the correspondence principle in games with strategic substitutes Structural estimation of discrete-choice games of incomplete information with multiple equilibria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1