EdgeFNF: Toward Real-time Fake News Detection on Mobile Edge Computing

Sawsan Al-Zubi, Feras M. Awaysheh
{"title":"EdgeFNF: Toward Real-time Fake News Detection on Mobile Edge Computing","authors":"Sawsan Al-Zubi, Feras M. Awaysheh","doi":"10.1109/FMEC57183.2022.10062503","DOIUrl":null,"url":null,"abstract":"Fake news (FN) spreads faster than ever due to social networks' ease of access, increasing reach, and lower cost. Twitter and Facebook are the most used platforms, allowing users to express news in short, simple lines that can be fake using their smartphones. Hence, real-time prediction and fast response time are vital in spotting FN and opposing its negative impact. However, smartphones have limited computational capabilities besides unreliable network connections. Relying on the amalgamation of the edge, fog, and cloud computing can relieve the previous bottleneck where computation offloads from edge devices to higher network layers on demand. In this paper, we proposed EdgeFNF, an edge fake news finder approach toward a fully Edge-to-Cloud mobile architecture. EdgeFNF collects data from social media platforms, e.g., tweets and posts, preprocess them on the mobile edge node, and uploads the metadata into a cloud server where multiple data processing techniques for text, such as Natural Language Processing (NLP), take place. Henceforth, detect fake news using NLTK and BERT algorithms. We provide the methodology, system architecture, and merits for achieving real-time, accurate detection of fake news.","PeriodicalId":129184,"journal":{"name":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC57183.2022.10062503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fake news (FN) spreads faster than ever due to social networks' ease of access, increasing reach, and lower cost. Twitter and Facebook are the most used platforms, allowing users to express news in short, simple lines that can be fake using their smartphones. Hence, real-time prediction and fast response time are vital in spotting FN and opposing its negative impact. However, smartphones have limited computational capabilities besides unreliable network connections. Relying on the amalgamation of the edge, fog, and cloud computing can relieve the previous bottleneck where computation offloads from edge devices to higher network layers on demand. In this paper, we proposed EdgeFNF, an edge fake news finder approach toward a fully Edge-to-Cloud mobile architecture. EdgeFNF collects data from social media platforms, e.g., tweets and posts, preprocess them on the mobile edge node, and uploads the metadata into a cloud server where multiple data processing techniques for text, such as Natural Language Processing (NLP), take place. Henceforth, detect fake news using NLTK and BERT algorithms. We provide the methodology, system architecture, and merits for achieving real-time, accurate detection of fake news.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动边缘计算的实时假新闻检测
由于社交网络的易用性、覆盖面的扩大和成本的降低,假新闻的传播速度比以往任何时候都要快。推特和脸书是最常用的平台,允许用户用简短、简单的句子来表达新闻,这些句子可以用智能手机伪造。因此,实时预测和快速响应时间对于发现FN并对抗其负面影响至关重要。然而,除了网络连接不可靠外,智能手机的计算能力有限。依靠边缘计算、雾计算和云计算的融合可以缓解以前的瓶颈,即计算根据需要从边缘设备转移到更高的网络层。在本文中,我们提出了EdgeFNF,一种边缘假新闻查找器方法,用于完全的边缘到云移动架构。EdgeFNF从社交媒体平台收集数据,如推文和帖子,在移动边缘节点上进行预处理,并将元数据上传到云服务器,在云服务器上进行多种文本数据处理技术,如自然语言处理(NLP)。今后,使用NLTK和BERT算法检测假新闻。我们提供了实现实时,准确检测假新闻的方法,系统架构和优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Comparison of Big Data Processing Utilizing SciDB and Apache Accumulo Databases Proposal of a Context-aware Task Scheduling Algorithm for the Fog Paradigm Fine-Tuned Access Control for Internet of Things EdgeFNF: Toward Real-time Fake News Detection on Mobile Edge Computing Evaluating Amazon EC2 Spot Price Prediction Models Using Regression Error Characteristic Curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1