Evaluating Amazon EC2 Spot Price Prediction Models Using Regression Error Characteristic Curve

Batool Alkaddah, A. Agarwal
{"title":"Evaluating Amazon EC2 Spot Price Prediction Models Using Regression Error Characteristic Curve","authors":"Batool Alkaddah, A. Agarwal","doi":"10.1109/FMEC57183.2022.10062720","DOIUrl":null,"url":null,"abstract":"Amazon EC2 offers inactive virtual machines (VM) as spot instances at up to 90% discount. In return, the least expensive option requires the customers' usage to be tolerated with a low availability level agreement. Thus, many studies proposed forecasting and prediction mechanisms to asses in finding the best set of maximum prices. In this paper, we study the model's efficiency in predicting spot EC2 prices with focusing on assessing the performance of forecasting algorithms: RFR, XGBoost, k-NNR, and SVR. Model's evaluation is crucial for measuring the accuracy of predicted prices, thus, we select six metrics for evaluating the forecasting results. We used the top implemented metrics in the related work: MAPE, RMSE, MAE, and MSE. In addition, we assessed the spotted models using the Regression Error Characteristics (REC) curve and the Area under the curve (AUC-REC) in comparison to prior measures. Three aspects are considered while building the models: dataset time per year, training window as 1-day or 1-month ahead and instance location. The trained model applies the cross-validation technique to learn the ideal hyper-parameters that achieve the highest accuracy. However, except for the SVR model, our findings indicate it is unnecessary to use this technique to improve the algorithms' accuracy. Our results investigations display the REC curve and AUC-REC as a superior performance measurements for evaluating models over different accuracy-loss thresholds.","PeriodicalId":129184,"journal":{"name":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"24 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC57183.2022.10062720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Amazon EC2 offers inactive virtual machines (VM) as spot instances at up to 90% discount. In return, the least expensive option requires the customers' usage to be tolerated with a low availability level agreement. Thus, many studies proposed forecasting and prediction mechanisms to asses in finding the best set of maximum prices. In this paper, we study the model's efficiency in predicting spot EC2 prices with focusing on assessing the performance of forecasting algorithms: RFR, XGBoost, k-NNR, and SVR. Model's evaluation is crucial for measuring the accuracy of predicted prices, thus, we select six metrics for evaluating the forecasting results. We used the top implemented metrics in the related work: MAPE, RMSE, MAE, and MSE. In addition, we assessed the spotted models using the Regression Error Characteristics (REC) curve and the Area under the curve (AUC-REC) in comparison to prior measures. Three aspects are considered while building the models: dataset time per year, training window as 1-day or 1-month ahead and instance location. The trained model applies the cross-validation technique to learn the ideal hyper-parameters that achieve the highest accuracy. However, except for the SVR model, our findings indicate it is unnecessary to use this technique to improve the algorithms' accuracy. Our results investigations display the REC curve and AUC-REC as a superior performance measurements for evaluating models over different accuracy-loss thresholds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用回归误差特征曲线评价Amazon EC2现货价格预测模型
Amazon EC2以高达90%的折扣提供非活动虚拟机(VM)作为现货实例。作为回报,最便宜的选项要求在低可用性级别协议下容忍客户的使用。因此,许多研究提出了预测和预测机制,以寻找最佳的最大价格集。在本文中,我们研究了模型在预测现货EC2价格方面的效率,重点评估了预测算法的性能:RFR, XGBoost, k-NNR和SVR。模型的评价是衡量预测价格准确性的关键,因此,我们选择了六个指标来评价预测结果。我们在相关工作中使用了最常用的实现指标:MAPE、RMSE、MAE和MSE。此外,我们使用回归误差特征(REC)曲线和曲线下面积(AUC-REC)与先前的测量方法进行比较,评估了斑点模型。在构建模型时考虑三个方面:每年的数据集时间,1天或1个月的训练窗口和实例位置。训练后的模型采用交叉验证技术学习达到最高精度的理想超参数。然而,除了SVR模型,我们的研究结果表明,没有必要使用这种技术来提高算法的准确性。我们的研究结果表明,REC曲线和AUC-REC是评估不同精度损失阈值的模型的优越性能测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Comparison of Big Data Processing Utilizing SciDB and Apache Accumulo Databases Proposal of a Context-aware Task Scheduling Algorithm for the Fog Paradigm Fine-Tuned Access Control for Internet of Things EdgeFNF: Toward Real-time Fake News Detection on Mobile Edge Computing Evaluating Amazon EC2 Spot Price Prediction Models Using Regression Error Characteristic Curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1