Object-Based Motion Estimation Using the EPD Similarity Measure

Md. Asikuzzaman, M. Pickering
{"title":"Object-Based Motion Estimation Using the EPD Similarity Measure","authors":"Md. Asikuzzaman, M. Pickering","doi":"10.1109/PCS.2018.8456287","DOIUrl":null,"url":null,"abstract":"Effective motion compensated prediction plays a significant role in efficient video compression. Image registration can be used to estimate the motion of the scene in a frame by finding the geometric transformation which automatically aligns reference and target images. In the video coding literature, image registration has been applied to find the global motion in a video frame. However, if the motion of individual objects in a frame is inconsistent across time, the global motion may provide a very inefficient representation of the true motion present in the scene. In this paper we propose a motion estimation algorithm for video coding using a new similarity measure called the edge position difference (EPD). This technique estimates the motion of the individual objects based on matching the edges of objects rather than estimating the motion using the pixel values in the frame. Experimental results demonstrate that the proposed edge-based similarity measure approach achieves superior motion compensated prediction for objects in a scene when compared to the approach which only considers the pixel values of the frame.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Effective motion compensated prediction plays a significant role in efficient video compression. Image registration can be used to estimate the motion of the scene in a frame by finding the geometric transformation which automatically aligns reference and target images. In the video coding literature, image registration has been applied to find the global motion in a video frame. However, if the motion of individual objects in a frame is inconsistent across time, the global motion may provide a very inefficient representation of the true motion present in the scene. In this paper we propose a motion estimation algorithm for video coding using a new similarity measure called the edge position difference (EPD). This technique estimates the motion of the individual objects based on matching the edges of objects rather than estimating the motion using the pixel values in the frame. Experimental results demonstrate that the proposed edge-based similarity measure approach achieves superior motion compensated prediction for objects in a scene when compared to the approach which only considers the pixel values of the frame.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EPD相似度量的目标运动估计
有效的运动补偿预测是实现高效视频压缩的重要手段。图像配准可以通过寻找自动对齐参考图像和目标图像的几何变换来估计一帧内场景的运动。在视频编码文献中,图像配准已被用于寻找视频帧中的全局运动。然而,如果一个帧中单个物体的运动在时间上是不一致的,那么全局运动可能会提供一个非常低效的场景中真实运动的表示。本文提出了一种基于边缘位置差(EPD)的视频编码运动估计算法。该技术基于匹配对象的边缘来估计单个对象的运动,而不是使用帧中的像素值来估计运动。实验结果表明,与仅考虑帧像素值的方法相比,基于边缘的相似性度量方法对场景中物体的运动补偿预测效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1