Kernel regression in HRBF networks for surface reconstruction

F. Bellocchio, N. A. Borghese, S. Ferrari, Vincenzo Piuri
{"title":"Kernel regression in HRBF networks for surface reconstruction","authors":"F. Bellocchio, N. A. Borghese, S. Ferrari, Vincenzo Piuri","doi":"10.1109/HAVE.2008.4685317","DOIUrl":null,"url":null,"abstract":"The Hierarchical Radial Basis Function (HRBF) Network is a neural model that proved its suitability in the surface reconstruction problem. Its non-iterative configuration algorithm requires an estimate of the surface in the centers of the units of the network. In this paper, we analyze the effect of different estimators in training HRBF networks, in terms of accuracy, required units, and computational time.","PeriodicalId":113594,"journal":{"name":"2008 IEEE International Workshop on Haptic Audio visual Environments and Games","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Workshop on Haptic Audio visual Environments and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAVE.2008.4685317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Hierarchical Radial Basis Function (HRBF) Network is a neural model that proved its suitability in the surface reconstruction problem. Its non-iterative configuration algorithm requires an estimate of the surface in the centers of the units of the network. In this paper, we analyze the effect of different estimators in training HRBF networks, in terms of accuracy, required units, and computational time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核回归在HRBF网络表面重构中的应用
分层径向基函数(HRBF)网络是一种适用于曲面重建问题的神经网络模型。它的非迭代配置算法需要对网络单元中心的表面进行估计。在本文中,我们从准确率、所需单元和计算时间方面分析了不同估计器在训练HRBF网络中的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of sensory substitution to simplify the mechanical design of a haptic wrist A comparison of Mamdani and Sugeno fuzzy inference systems for evaluating the quality of experience of Hapto-Audio-Visual applications An auxiliary area of interest management for synchronization and load regulation in zonal P2P MMOGs Evaluating geometrical properties of virtual shapes using interactive sonification Haptic and visual rendering of virtual bone surgery: A physically realistic voxel-based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1