Unsupervised Image Dataset Annotation Framework for Snow Covered Road Networks

Mohamed Karaa, Hakim Ghazzai, Lokman Sboui, Hichem Besbes, Y. Massoud
{"title":"Unsupervised Image Dataset Annotation Framework for Snow Covered Road Networks","authors":"Mohamed Karaa, Hakim Ghazzai, Lokman Sboui, Hichem Besbes, Y. Massoud","doi":"10.1109/APCCAS55924.2022.10090274","DOIUrl":null,"url":null,"abstract":"Road surface condition estimation plays a crucial role in road safety and maintenance, especially in adverse weather conditions like snowfall. In this paper, we introduce a framework for unsupervised annotation of a dataset describing road snow cover level. This framework relies on feature learning using autoencoders and graph clustering using the Louvain community detection algorithm. We also incorporate time and weather data to facilitate the annotation process. We evaluate our method by assessing its different steps and comparing it to another density-based clustering method. We also present a large image dataset describing four road cover states in urban scenes, including different weather and visual conditions. The dataset comprises 41346 images collected from road monitoring cameras installed in Montreal, Canada, during the 2022 winter season. This dataset intends to help integrate computer vision techniques in planning snow removal operations.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Road surface condition estimation plays a crucial role in road safety and maintenance, especially in adverse weather conditions like snowfall. In this paper, we introduce a framework for unsupervised annotation of a dataset describing road snow cover level. This framework relies on feature learning using autoencoders and graph clustering using the Louvain community detection algorithm. We also incorporate time and weather data to facilitate the annotation process. We evaluate our method by assessing its different steps and comparing it to another density-based clustering method. We also present a large image dataset describing four road cover states in urban scenes, including different weather and visual conditions. The dataset comprises 41346 images collected from road monitoring cameras installed in Montreal, Canada, during the 2022 winter season. This dataset intends to help integrate computer vision techniques in planning snow removal operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
积雪路网无监督图像数据集标注框架
路面状况评估在道路安全和维护中起着至关重要的作用,特别是在降雪等恶劣天气条件下。在本文中,我们引入了一个对描述道路积雪水平的数据集进行无监督标注的框架。该框架依赖于使用自编码器的特征学习和使用Louvain社区检测算法的图聚类。我们还合并了时间和天气数据,以方便注释过程。我们通过评估其不同步骤并将其与另一种基于密度的聚类方法进行比较来评估我们的方法。我们还提供了一个描述城市场景中四种道路覆盖状态的大型图像数据集,包括不同的天气和视觉条件。该数据集包括从2022年冬季安装在加拿大蒙特利尔的道路监控摄像头收集的41346张图像。该数据集旨在帮助将计算机视觉技术集成到规划除雪操作中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Mixed-Bit ReRAM-based Computing-in-Memory CNN Accelerator with Fully Parallel Readout An Eigen-decomposition Free Method for Computing Graph Fourier Transform Centrality A 60-GHz CMOS Balanced Power Amplifier with Miniaturized Quadrature Hybrids Achieving 19.0-dBm Output Power and 24.4% Peak PAE A Vector Pair Based DWA Algorithm for Linearity Enhancement of CDACs in the NS-SAR ADC Optimal Evasive Path Planning with Velocity Constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1