Manifold Guided Graph Neural Networks for Skeleton-based Action Recognition in Human Computer Interaction Videos

Xin Li, Ce Li, Xianlong Wei, Feng Yang
{"title":"Manifold Guided Graph Neural Networks for Skeleton-based Action Recognition in Human Computer Interaction Videos","authors":"Xin Li, Ce Li, Xianlong Wei, Feng Yang","doi":"10.1109/CONF-SPML54095.2021.00053","DOIUrl":null,"url":null,"abstract":"As the key application in video analysis for human computer interaction (HCI), the problem of skeleton-based action recognition has been solved by some researchers with graph neural networks, but it remains an unsolved issue on complex variations of spatiotemporal dependence across skeleton joints flow. A newly dynamic spatio-temporal graph structure learning method, manifold guided graph neural networks (MGNN), was proposed to solve this problem. In MGNN, a novel manifold guided graph updating mechanism is built based on the baseline graph neural network to further describe the spatio-temporal dependence. With the manifold guided multi-scale skeleton graph, the proposed MGNN is further trained with two streams of joint and bone to improve the efficiency, which forms a single network seamlessly and enables it be trained in a same umbrella. Comparing with the existing methods, MGNN has been proved that it yields better performance on challenging datasets: NTU RGB+D 60 and Kinetics 400.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As the key application in video analysis for human computer interaction (HCI), the problem of skeleton-based action recognition has been solved by some researchers with graph neural networks, but it remains an unsolved issue on complex variations of spatiotemporal dependence across skeleton joints flow. A newly dynamic spatio-temporal graph structure learning method, manifold guided graph neural networks (MGNN), was proposed to solve this problem. In MGNN, a novel manifold guided graph updating mechanism is built based on the baseline graph neural network to further describe the spatio-temporal dependence. With the manifold guided multi-scale skeleton graph, the proposed MGNN is further trained with two streams of joint and bone to improve the efficiency, which forms a single network seamlessly and enables it be trained in a same umbrella. Comparing with the existing methods, MGNN has been proved that it yields better performance on challenging datasets: NTU RGB+D 60 and Kinetics 400.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于骨架的人机交互视频动作识别的流形导图神经网络
作为人机交互(HCI)视频分析的关键应用,基于骨骼的动作识别问题已经被一些研究者用图神经网络解决,但在骨骼关节流时空依赖的复杂变化问题上仍是一个未解决的问题。针对这一问题,提出了一种新的动态时空图结构学习方法——流形引导图神经网络(MGNN)。在MGNN中,基于基线图神经网络构建了一种新的流形引导图更新机制,进一步描述了图的时空依赖性。利用流形引导的多尺度骨架图,进一步对MGNN进行关节和骨骼两流的训练,提高了训练效率,使其无缝地形成一个单一网络,并使其能够在同一保护伞下进行训练。与现有方法相比,MGNN已被证明在具有挑战性的数据集上具有更好的性能:NTU RGB+D 60和Kinetics 400。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-stage Adaptive Weight-adjusting Interference Cancellation Demodulation Technology Based on SLIC and CWIC for NOMA Stabilization with the Idea of Notch Filter in Automatic Control System Remote Sensing Image Classification Methods Based on CNN: Challenge and Trends An Overview of Recommender Systems and Its Next Generation: Context-Aware Recommender Systems Manifold Guided Graph Neural Networks for Skeleton-based Action Recognition in Human Computer Interaction Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1